JEE MAIN 2024 Paper with Solution

Chemistry $\mid 30^{\text {th }}$ January 2024 _ Shift-2

Motílon

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP

SECTION - A

1. Which among the following purification methods is based on the principle of "Solubility" in two different solvents?
(1) Column Chromatography
(2) Sublimation
(3) Distillation
(4) Differential Extraction

Ans. 4
Different layers are formed which can be separated in funnel. (Theory based).
2. Salicylaldehyde is synthesized from phenol, when reacted with
(1)

(2) $\mathrm{CO}_{2}, \mathrm{NaOH}$
(3) $\mathrm{CCl}_{4}, \mathrm{NaOH}$
(4) $\mathrm{HCCl}_{3}, \mathrm{NaOH}$

Ans. 4

Reimer Tiemann Reaction

3. Given below are two statements:

Statement - I : High concentration of strong nucleophilic reagent with secondary alkyl halides which do not have bulky substituents will follow $\mathrm{S}_{\mathrm{N}}{ }^{2}$ mechanism.

Statement - II : A secondary alkyl halide when treated with a large excess of ethanol follows $\mathrm{S}_{\mathrm{N}}{ }^{1}$ mechanism. In the light of the above statements, choose the most appropriate from the options given below:
(1) Statement I is true but Statement II is false.
(2) Statement I is false but Statement II is true.
(3) Both Statement I and Statement II are false.
(4) Both Statement I and Statement II are true.

Ans. 4
Statement 1 : High conc ${ }^{\mathrm{n}}$. of strong nu reagent with 2° Alkyl Halide which do not have bulky substituents will follow $\mathrm{S}_{\mathrm{N}}{ }^{2}$ mechanism.
Hence statement I is true.
Statement 2: 2° Alkyl Halide reacts with excess of ethanol undergo $\mathrm{S}_{\mathrm{N}}{ }^{1}$ reaction.
Hence statement 2 is true

Motílon

4. m-chlorobenzaldehyde on treatment with $50 \% \mathrm{KOH}$ solution yields
(1)

(2)

(3)

(4)

Ans. 2
Cannizaro reaction (Disproportination reaction)

5. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: $\mathrm{H}_{2} \mathrm{Te}$ is more acidic than $\mathrm{H}_{2} \mathrm{~S}$.
Reason R: Bond dissociation enthalpy of $\mathrm{H}_{2} \mathrm{Te}$ is lower than $\mathrm{H}_{2} \mathrm{~S}$.
In the light of the above statements, choose the most appropriate from the options given below:
(1) Both A and R are true but R is NOT the correct explanation of A.
(2) Both A and R are true and R is the correct explanation of A.
(3) A is false but R is true.
(4) A is true but R is false.

Ans. 2
Due to lower bond dissociation energy of $\mathrm{H}_{2} \mathrm{Te}$ it ionizes to give H^{+}more easily as compare to $\mathrm{H}_{2} \mathrm{~S}$
6. Products A and B formed in the following set of reactions are

(1)

(2)

(3)

(4)

Ans. 2

7. IUPAC name of following compound is :

(1) 2-Aminopentanenitrile
(2) 2-Aminobutanenitrile
(3) 3-Aminobutanenitrile
(4) 3-Aminopropanenitrile

Ans. 3

3-Amino butanenitrile
8. The products A and B formed in the following reaction scheme are respectively
i) con. $\mathrm{HNO}_{3} /$ con. $\mathrm{H}_{2} \mathrm{SO}_{4}$

(1)

(2)

(3)

(4)

Ans. 3

9. The molecule / ion with square pyramidal shape is
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(2) PCl_{5}
(3) BrF_{5}
(4) PF_{5}

Ans. 3

$\mathrm{sp}^{3} \mathrm{~d}^{2}$
square pyramidal
10. The orange colour of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and purple colour of KMnO_{4} is due to
(1) Charge transfer transition in both.
(2) $\mathrm{d} \rightarrow \mathrm{d}$ transitions in KMnO_{4} and charge transfer transitions in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
(3) $\mathrm{d} \rightarrow \mathrm{d}$ transitions in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and charge transfer transitions in KMnO_{4}.
(4) $d \rightarrow d$ transitions in both

Ans. 1
orange colour of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and purple colour of KMnO_{4} is due to ligand to metal charge transfer (LMCT)
11. Alkaline oxidative fusion of MnO_{2} gives "A" which on electrolytic oxidation in alkaline solution produces B. A and B respectively are
(1) $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and MnO_{4}^{-}
(2) MnO_{4}^{2-} and MnO_{4}^{-}
(3) $\mathrm{Mn}_{2} \mathrm{O}_{3}$ and MnO_{4}^{2-}
(4) MnO_{4}^{2-} and $\mathrm{Mn}_{2} \mathrm{O}_{7}$

Ans. 2

Alkaline oxidative fusion of MnO_{2} gives MnO_{4}^{2-}
$2 \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MnO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$
electrolytic oxidation of MnO_{4}^{2-} in alkaline solution gives MnO_{4}^{-}

$$
\mathrm{MnO}_{4}^{2-} \rightarrow \mathrm{MnO}_{4}^{-}+\mathrm{e}^{-}
$$

JEE MAIN 2024
12. If a substance ' A ' dissolves in solution of a mixture of ' B^{\prime} and ' C^{\prime} with their respective number of moles as $\mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}$ and n_{C}. Mole fraction of C in the solution is
(1) $\frac{n_{C}}{n_{A} \times n_{B} \times n_{C}}$
(2) $\frac{n_{C}}{n_{A}+n_{B}+n_{C}}$
(3) $\frac{n_{C}}{n_{A}-n_{B}-n_{C}}$
(4) $\frac{n_{B}}{n_{A}+n_{B}}$

Ans. (2)
mole fraction of $C\left(X_{c}\right)=\frac{n_{C}}{n_{A}+n_{B}+n_{C}}$
13. Given below are two statements:

Statement - I : Along the period, the chemical reactivity of the elements gradually increases from group 1 to group 18.
Statement - II : The nature of oxides formed by group 1 elements is basic while that of group 17 elements is acidic.
In the light of the above statements, choose the most appropriate from the options given below:
(1) Both Statement I and Statement II are True
(2) Statement I is True But Statement II is False
(3) Statement I is False but statement II is true
(4) Both Statement I and Statement II are False

Ans. 3
Chemical reactivity along the period decreases
So, statement-I is wrong
Group-I elements form basic nature oxide while group 17 elements form acidic nature oxide
14. The coordination geometry around the manganese in decacarbonyldimanganese (0) is
(1) Octahedral
(2) Trigonal bipyramidal
(3) Square pyramidal
(4) Square planar

Ans. 1

Octahedral around Mn
15. Given below are two statements:

Statement - I : Since Fluorine is more electronegative than nitrogen, the net dipole moment of NF_{3} is greater than NH_{3}.
Statement - II : In NH_{3}, the orbital dipole due to lone pair and the dipole moment of NH bonds are in opposite direction, but in NF_{3} the orbital dipole due to lone pair and dipole moments of $\mathrm{N}-\mathrm{F}$ bonds are in same direction.
In the light of the above statements, choose the most appropriate from the options given below:
(1) Statement I is true but Statement II is false.
(2) Both Statement I and Statement II are false.
(3) Both Statement I and Statement II are true.
(4) Statement I is false but Statement II is true.

Ans. 2

Both statement are false

Motílon

16. The correct stability order of carbocations is
(1) $\left(\mathrm{CII}_{3}\right)_{3} \mathrm{C}^{+}>\mathrm{CII}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{HI}_{2}>\left(\mathrm{CII}_{3}\right)_{2} \stackrel{+}{\mathrm{C}} \mathrm{II}>\stackrel{+}{\mathrm{C}} \mathrm{II}_{3}$
(2) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}>\left(\mathrm{CH}_{3}\right)_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}>\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \stackrel{+}{\mathrm{C}}$
(3)

(4)

Ans. 3
Stability order carbocation

17. The solution from the following with highest depression in freezing point/lowest freezing point is
(1) 180 g of acetic acid dissolved in water
(2) 180 g of acetic acid dissolved in benzene
(3) 180 g of benzoic acid dissolved in benzene
(4) 180 g of glucose dissolved in water

Ans. 1
Highest depression in freezing point (Colligative Properties) is inversely proportional to experimentally molar mass of non volatile solute

* on dissociation exp. Molar mass dec.
* On association exp. Molar mass Inc.

18. A and B formed in the following reactions are:
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{A}+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{A}+2 \mathrm{HCl}+2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~B}+3 \mathrm{H}_{2} \mathrm{O}$
(1) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{CrO}_{4}, \mathrm{~B}=\mathrm{CrO}_{5}$
(2) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}, \mathrm{~B}=\mathrm{CrO}_{4}$
(3) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{~B}=\mathrm{CrO}_{3}$
(4) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{~B}=\mathrm{CrO}_{5}$

Ans. 1
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}$
(A)
$\mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{HCl}+2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CrO}_{5}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}$
(B)
19. Choose the correct statements about the hydrides of group 15 elements.
A. The stability of the hydrides decreases in the order $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$.
B. The reducing ability of the hydride increases in the order $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$.
C. Among the hydrides, NH_{3} is strong reducing agent while BiH_{3} is mild reducing agent.
D. The basicity of the hydrides increases in the order $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$.

Choose the most appropriate from the options given below:
(1) B and C only
(2) C and D only
(3) A and B only
(4) A and D only

Ans. 3

| NH_{3} |
| :--- | :--- |
| PH_{3} |
| ASH_{3} |
| SbH_{3} |
| BiH_{3} |\quad| M-H bond length \uparrow |
| :--- |
| Thermal stability \downarrow |
| Reducing nature \uparrow |

20. Reduction potential of ions are given below:

$$
\begin{array}{ccc}
\mathrm{ClO}_{4}^{-} & \mathrm{IO}_{4}^{-} & \mathrm{BrO}_{4}^{-} \\
\mathrm{E}^{\circ}=1.19 \mathrm{~V} & \mathrm{E}^{\circ}=1.65 \mathrm{~V} & \mathrm{E}^{\circ}=1.74 \mathrm{~V}
\end{array}
$$

The correct order of their oxidizing power is.
(1) $\mathrm{ClO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{BrO}_{4}^{-}$
(2) $\mathrm{BrO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$
(3) $\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}>\mathrm{IO}_{4}^{-}$
(4) $\mathrm{IO}_{4}^{-}>\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$

Ans. 2
Oxidizing power \propto Reduction potential

$$
\begin{array}{ccc}
\mathrm{ClO}_{4}^{-} & \mathrm{IO}_{4}^{-} & \mathrm{BrO}_{4}^{-} \\
\mathrm{E}_{\text {red }}^{\mathrm{o}} 1.19 \mathrm{~V} & 1.65 \mathrm{~V} & 1.74 \mathrm{~V}
\end{array}
$$

order of standard reduction potential
$\mathrm{E}^{0} \mathrm{ClO}_{4}^{-}<\mathrm{IO}_{4}^{-}<\mathrm{BrO}_{4}^{-}$
Thus order of oxidizing power
$\mathrm{ClO}_{4}^{-}<\mathrm{IO}_{4}^{-}<\mathrm{BrO}_{4}^{-}$

SECTION - B

21. Number of complexes which show optical isomerism among the following is cis $-\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$, cis $-\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$, cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$, trans $-\left[\operatorname{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$, trans $-\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-}$
Ans. 4
Those complex which has no COS and POS areoptically active
Cis- $\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}, \mathrm{Cis}-\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+2},\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$
22. NO_{2} required for a reaction is produced by decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} as by equation
$2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
The initial concetration. of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $3 \mathrm{molL}^{-1}$ and it is $2.75 \mathrm{molL}^{-1}$ after 30 minutes.
The rate of formation of NO_{2} is $\mathrm{x} \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~min}^{-1}$, value of x is (nearest integer) \qquad -.
Ans. 17
$\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=-\frac{1}{4} \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}$
$\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=-2 \frac{\mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}$
$\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=-2 \frac{(3-2.75)}{30}$
$\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\frac{2 \times 0.25}{30}$
$=1.667 \times 10^{-2}$
$=16.67 \times 10^{-3}$
$\mathrm{x} \approx 17 \times 10^{-3}$
23. Two reactions are given below:
$2 \mathrm{Fe}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}, \Delta \mathrm{H}^{\circ}=-822 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}^{\circ}=-110 \mathrm{~kJ} / \mathrm{mol}$
Then enthalpy change for following reaction $3 \mathrm{C}_{(\mathrm{s})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{(\mathrm{g})}$ is \qquad $\mathrm{kJ} / \mathrm{mol}$.
Ans. 492
By Hess law
$2 \mathrm{Fe}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \quad \Delta \mathrm{H}^{\mathrm{o}}=-822 \mathrm{KJ}$
$\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}$

$$
\Delta \mathrm{H}^{\mathrm{o}}=-110 \mathrm{KJ} / \mathrm{mol}
$$

$\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}+3 / 2 \mathrm{O}_{2}$
$\Delta \mathrm{H}^{\mathrm{o}}=822 \mathrm{KJ} \ldots . .(3)$
eq. (2) multiply by 3
$3 \mathrm{C}+\frac{3}{2} \mathrm{O}_{2} \rightarrow 3 \mathrm{CO} \quad \Delta \mathrm{H}^{\mathrm{o}}=-330 \mathrm{KJ}$
eq. (3) $+(4)$
$3 \mathrm{C}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO} \quad \Delta \mathrm{H}=492 \mathrm{KJ} / \mathrm{mol}$
24. The total number of correct statements, regarding the nucleic acids is
A. RNA is regarded as the reserve of genetic information
B. DNA molecule self-duplicates during cell division
C. DNA synthesizes proteins in the cell
D. The message for the synthesis of particular proteins is present in DNA
E. Identical DNA strands are transferred to daughter cells.

Ans. 3

A	B	C	D	E
(False)	(True)	(False)	(True)	(True)

Motílon

25. The pH of an aqueous solution containing 1 M benzoic acid $\left(\mathrm{pK}_{\mathrm{a}}=4.20\right)$ and 1 M sodium benzoate is 4.5 . The volume of benzoic acid solution in 300 mL of this buffer solution is \qquad mL . (given : $\log 2=0.3$)
Ans. 100
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left(\mathrm{V}_{\text {salt }}\right)}{\left(\mathrm{V}_{\text {acid }}\right)}$
$4.5=4.2+\log \frac{\left(\mathrm{V}_{\text {salt }}\right)}{\left(\mathrm{V}_{\text {acid }}\right)}$
$\log \frac{\left(\mathrm{V}_{\text {salt }}\right)}{\left(\mathrm{V}_{\text {acid }}\right)}=0.3$
$\frac{\left(\mathrm{V}_{\text {salt }}\right)}{\left(\mathrm{V}_{\text {acid }}\right)}=2$
$\mathrm{V}_{\text {salt }}+\mathrm{V}_{\text {acid }}=300 \mathrm{ml}$ (Eq. 2)
By Eq. (1) \& (2)
$V_{\text {salt }}=200 \mathrm{ml}$
$\mathrm{V}_{\mathrm{acid}}=100 \mathrm{ml}$
26. Number. of geometrical isomers possible for the given structure is/are \qquad .

Ans. 4

(E, E) (E, Z) (Z, Z) (Z, E)
27. Total number of species from the following which can undergo disproportionation reaction is \qquad .
$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{ClO}_{3}^{-}, \mathrm{P}_{4}, \mathrm{Cl}_{2}, \mathrm{Ag}, \mathrm{Cu}^{+1}, \mathrm{~F}_{2}, \mathrm{NO}_{2}, \mathrm{~K}^{+}$
Ans. 6
Intermediate oxidation state of element can undergo disproportionation reaction
$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{ClO}_{3}^{-}, \mathrm{P}_{4}, \mathrm{Cl}_{2}, \mathrm{Cu}^{+}, \mathrm{NO}_{2}$
28. Number of metal ions characterized by flame test among the following is \qquad .
$\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Fe}^{2+}$
Ans. 4
Metal ions $\left(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+} \mathrm{Cu}^{2+}\right)$
responds flame test
29. 2-chlorobutane $+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$ (isomers)

Total number of optically active isomers shown by $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$, obtained in the above reaction is \qquad _.

Ans. 3

(3)
30. Number of spectral lines obtained in He^{+}spectra, when an electron makes transition from fifth excited state to first excited state will be

Ans. 10
Fifth excited state $\mathrm{n}_{2}=6$
first excited state $n_{1}=2$
Number of spectra line $\frac{\left[\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)\right]\left[\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)+1\right]}{2}$
$=\frac{(6-2)(6-2+1)}{2}$
$=\frac{4 \times 5}{2}=\frac{20}{2}=10$

Motion

JEE MAIN 2024

JEE Main + Advanced 2024 की तैयारी में रह रही है कमी?

Crash Course
STARTING FROM
7th Feb'24
OFFLINE
Rs. 9999

ONLINE
Rs. 4999

JEE Main 2024 Session 1
की तैयारी में रह रही है कमी?

Continuing to keep the pledge of imparting education for the last 17 Years

Most Promising RANKS
Produced by MOTION Faculties
NEET / AIIMS

JEE MAIN+ADVANCED

Nation's Best SELECTION
Percentage (\%) Ratio

(2023)
$6492 / 7084=91.64 \%$ (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANGED
(2023)

2747/5182 = 53.01\% (2022)
$1756 / 4818=36.45 \%$

Student Qualified in JEE MAIN
(2023)
$5993 / 8497=70.53 \%$
(2022)
$4818 / 6653=72.41 \%$

NITIN VIIJAY (NV Sir)
Founder \& CEO
Motílon

