JEE MAIN 2024 Paper with Solution

Chemistry | 30th January 2024 _ Shift-2

FOUNDATION (Class 6th to 10th) Olympiads/Boards MOTION LEARNING APP

Scan Code for Demo Class

CORPORATE OFFICE "Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.) Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

JEE MAIN 2024

SECTION – A

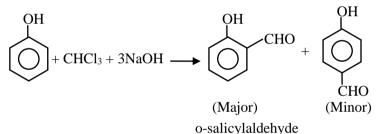
- **1.** Which among the following purification methods is based on the principle of "Solubility" in two different solvents?
 - (1) Column Chromatography
 - (3) Distillation

(2) Sublimation

(4) Differential Extraction

Ans. 4

Different layers are formed which can be separated in funnel. (Theory based).


2. Salicylaldehyde is synthesized from phenol, when reacted with

$$(1) H Cl, NaOH$$

$$(2) CO2, NaOH$$

$$(3) CCl4, NaOH$$

(4) HCCl₃, NaOH

Reimer Tiemann Reaction

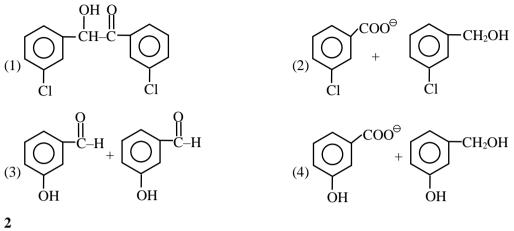
3. Given below are two statements:

Statement – I : High concentration of strong nucleophilic reagent with secondary alkyl halides which do not have bulky substituents will follow S_N^2 mechanism.

Statement – II : A secondary alkyl halide when treated with a large excess of ethanol follows S_N^{-1} mechanism. In the light of the above statements, choose the most appropriate from the options given below:

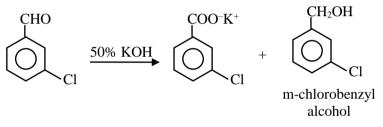
- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are false.
- (4) Both Statement I and Statement II are true.

Ans. 4


Statement 1 : High concⁿ. of strong nu⁻ reagent with 2° Alkyl Halide which do not have bulky substituents will follow S_N^2 mechanism.

Hence statement I is true.

Statement 2 : 2° Alkyl Halide reacts with excess of ethanol undergo S_N^{-1} reaction.


Hence statement 2 is true

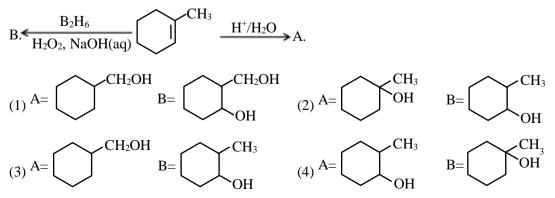
4. m-chlorobenzaldehyde on treatment with 50% KOH solution yields

Ans. 2

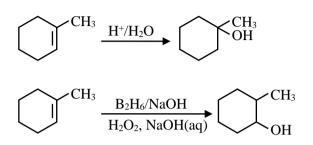
Cannizaro reaction (Disproportination reaction)

5. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R: Assertion A: H_2Te is more acidic than H_2S .

Reason R: Bond dissociation enthalpy of H_2Te is lower than H_2S .

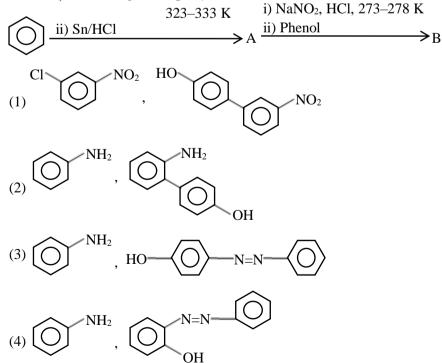

In the light of the above statements, choose the most appropriate from the options given below:

- (1) Both A and R are true but R is NOT the correct explanation of A.
- (2) Both A and R are true and R is the correct explanation of A.
- (3) A is false but R is true.
- (4) A is true but R is false.

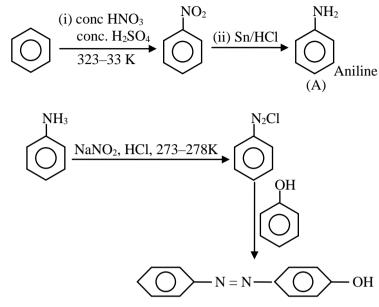

Ans. 2

Due to lower bond dissociation energy of H_2Te it ionizes to give H^+ more easily as compare to H_2S

6. Products A and B formed in the following set of reactions are


Ans. 2

- 7. IUPAC name of following compound is : CH₃--CH--CH₂--CN NH₂
 - (1) 2-Aminopentanenitrile
 - (2) 2-Aminobutanenitrile
 - (3) 3-Aminobutanenitrile
 - (4) 3-Aminopropanenitrile


Ans. 3

- 4 3 2 1 C-C-C-CN 3-Amino butanenitrile
- 8. The products A and B formed in the following reaction scheme are respectively i) con. HNO₃/con. H₂SO₄

Ans. 3

9. The molecule / ion with square pyramidal shape is

(1) $[Ni(CN)_4]^{2-}$ (2) PCl₅ (3) BrF₅ (4) PF₅ 3

$$F \xrightarrow{F} F$$

square pyramidal

- The orange colour of $K_2Cr_2O_7$ and purple colour of $KMnO_4$ is due to 10.
 - (1) Charge transfer transition in both.
 - (2) d \rightarrow d transitions in KMnO₄ and charge transfer transitions in K₂Cr₂O₇.
 - (3) $d \rightarrow d$ transitions in K₂Cr₂O₇ and charge transfer transitions in KMnO₄.
 - (4) $d \rightarrow d$ transitions in both

Ans. 1

orange colour of K₂Cr₂O₇ and purple colour of KMnO₄ is due to ligand to metal charge transfer (LMCT)

Alkaline oxidative fusion of MnO₂ gives "A" which on electrolytic oxidation in alkaline solution produces B. 11. A and B respectively are

(2) MnO_4^{2-} and MnO_4^{-} (1) Mn_2O_7 and MnO_4^-

(4) MnO_4^{2-} and Mn_2O_7 (3) Mn_2O_3 and MnO_4^{2-}

Ans. 2

Alkaline oxidative fusion of MnO_2 gives MnO_4^{2-}

 $2MnO_2 + 4OH^- + O_2 \rightarrow 2 MnO_4^{2-} + 2H_2O$

electrolytic oxidation of MnO_4^{2-} in alkaline solution gives MnO_4^{-}

 $MnO_4^{2-} \rightarrow MnO_4^{-} + e^{-}$

12. If a substance 'A' dissolves in solution of a mixture of 'B ' and 'C' with their respective number of moles as n_A, n_B and n_C . Mole fraction of C in the solution is

JEE MAIN

2024

(1)
$$\frac{n_{\rm C}}{n_{\rm A} \times n_{\rm B} \times n_{\rm C}}$$
 (2) $\frac{n_{\rm C}}{n_{\rm A} + n_{\rm B} + n_{\rm C}}$ (3) $\frac{n_{\rm C}}{n_{\rm A} - n_{\rm B} - n_{\rm C}}$ (4) $\frac{n_{\rm B}}{n_{\rm A} + n_{\rm B}}$

Ans. (2)

mole fraction of C(X_c) = $\frac{n_C}{n_A + n_B + n_C}$

13. Given below are two statements:

Statement – I: Along the period, the chemical reactivity of the elements gradually increases from group 1 to group 18.

Statement – II : The nature of oxides formed by group 1 elements is basic while that of group 17 elements is acidic.

In the light of the above statements, choose the most appropriate from the options given below:

- (1) Both Statement I and Statement II are True
- (2) Statement I is True But Statement II is False
- (3) Statement I is False but statement II is true
- (4) Both Statement I and Statement II are False

Ans. 3

Chemical reactivity along the period decreases

So, statement-I is wrong

Group-I elements form basic nature oxide while group 17 elements form acidic nature oxide

- **14.** The coordination geometry around the manganese in decacarbonyldimanganese (0) is
 - (1) Octahedral(3) Square pyramidal
- (2) Trigonal bipyramidal(4) Square planar

Ans. 1

15.

$$\begin{array}{c|c} CO & CO & CO \\ CO & 1 & CO \\ CO & Mn & Mn & CO \\ CO & 1 & CO \\ CO & CO & CO \end{array}$$

Octahedral around Mn

Given below are two statements:

Statement – **I** : Since Fluorine is more electronegative than nitrogen, the net dipole moment of NF_3 is greater than NH_3 .

Statement – II : In NH_3 , the orbital dipole due to lone pair and the dipole moment of NH bonds are in opposite direction, but in NF_3 the orbital dipole due to lone pair and dipole moments of N-F bonds are in same direction. In the light of the above statements, choose the most appropriate from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Both Statement I and Statement II are false.
- (3) Both Statement I and Statement II are true.
- (4) Statement I is false but Statement II is true.

Ans.

2

Both statement are false

16. The correct stability order of carbocations is

(1)
$$(CII_3)_3 C^+ > CII_3 - \overset{+}{C}II_2 > (CII_3)_2 \overset{+}{C}II > \overset{+}{C}II_3$$

(2) $\overset{+}{C}H_3 > (CH_3)_2 \overset{+}{C}H > CH_3 - \overset{+}{C}H_2 > (CH_3)_3 \overset{+}{C}$
(3) $(CH_3)_3 \overset{+}{C} > (CH_3)_2 \overset{+}{C}H > CH_3 - \overset{+}{C}H_2 > \overset{+}{C}H_3$
(4) $\overset{+}{C}H_3 > CH_3 - \overset{+}{C}H_2 > CH_3 - \overset{+}{C}H_2 (CH_3)_3 C^+$
 $\downarrow CH_3$

Ans. 3

Stability order carbocation

$$CH_{3}-\overset{\dagger}{C}-CH_{3} > CH_{3}-\overset{\dagger}{C}-CH_{3} > \overset{\dagger}{C}-CH_{3} > \overset{\dagger}{C}H_{3}$$

$$CH_{3}$$

$$(9 \alpha-H) \qquad (6 \alpha-H) \qquad (3 \alpha-H)$$

- 17. The solution from the following with highest depression in freezing point/lowest freezing point is
 - (1) 180 g of acetic acid dissolved in water
 - (2) 180 g of acetic acid dissolved in benzene
 - (3) 180 g of benzoic acid dissolved in benzene
 - (4) 180 g of glucose dissolved in water

Ans. 1

Highest depression in freezing point (Colligative Properties) is inversely proportional to experimentally molar mass of non volatile solute

JEE MAIN

2024

* on dissociation exp. Molar mass dec.

* On association exp. Molar mass Inc.

18. A and B formed in the following reactions are:

$$CrO_2Cl_2 + 4NaOH \rightarrow A + 2NaCl + 2H_2O$$
$$A + 2HCl + 2H_2O_2 \rightarrow B + 3H_2O$$

(1)
$$A = Na_2CrO_4, B = CrO_5$$

(2)
$$A = Na_2Cr_2O_4, B = CrO_4$$

(3)
$$A = Na_2Cr_2O_7, B = CrO_3$$

(4)
$$A = Na_2Cr_2O_7, B = CrO_5$$

Ans. 1

 $CrO_{2}Cl_{2}+4NaOH \rightarrow Na_{2}CrO_{4}+2NaCl+2H_{2}O$ (A) $Na_{2}CrO_{4}+2HCl+2H_{2}O_{2}\rightarrow CrO_{5}+3H_{2}O+2NaCl$

19. Choose the correct statements about the hydrides of group 15 elements.

A. The stability of the hydrides decreases in the order $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.

B. The reducing ability of the hydride increases in the order $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$.

C. Among the hydrides, NH₃ is strong reducing agent while BiH₃ is mild reducing agent.

D. The basicity of the hydrides increases in the order $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$.

Choose the most appropriate from the options given below:

(1) B and C only (2) C and D only (3) A and B only (4) A and D only **3** $NH_3 \mid M$ -H bond length \uparrow

PH₃ Thermal stability \downarrow ASH₃ Reducing nature \uparrow SbH₃ BiH₃

20. Reduction potential of ions are given below:

 $ClO_{4}^{-} IO_{4}^{-} BrO_{4}^{-}$ $E^{\circ} = 1.19 V E^{\circ} = 1.65 V E^{\circ} = 1.74 V$ The correct order of their original

The correct order of their oxidizing power is.

(1) $ClO_{4}^{-} > IO_{4}^{-} > BrO_{4}^{-}$ (2) $BrO_{4}^{-} > IO_{4}^{-} > ClO_{4}^{-}$ (3) $BrO_{4}^{-} > ClO_{4}^{-} > IO_{4}^{-}$ (4) $IO_{4}^{-} > BrO_{4}^{-} > ClO_{4}^{-}$

Ans. 2

Ans.

Oxidizing power \propto Reduction potential

 $ClO_4^ IO_4^ BrO_4^-$

 E_{red}^{o} 1.19V 1.65V 1.74V

order of standard reduction potential

 $E^{\circ} ClO_{4}^{-} < IO_{4}^{-} < BrO_{4}^{-}$

Thus order of oxidizing power

 $ClO_{4}^{-} < IO_{4}^{-} < BrO_{4}^{-}$

SECTION - B

21. Number of complexes which show optical isomerism among the following is

$$\operatorname{cis} - [\operatorname{Cr}(\operatorname{ox})_{2}\operatorname{Cl}_{2}]^{3^{-}}, [\operatorname{Co}(\operatorname{en})_{3}]^{3^{+}}, \operatorname{cis} - [\operatorname{Pt}(\operatorname{en})_{2}\operatorname{Cl}_{2}]^{2^{+}}, \operatorname{cis} - [\operatorname{Co}(\operatorname{en})_{2}\operatorname{Cl}_{2}]^{+},$$

trans $- [\operatorname{Pt}(\operatorname{en})_{2}\operatorname{Cl}_{2}]^{2^{+}}, \operatorname{trans} - [\operatorname{Cr}(\operatorname{ox})_{2}\operatorname{Cl}_{2}]^{3^{-}}$

Ans. 4

Those complex which has no COS and POS are optically active $Cis-[Cr(ox)_2Cl_2]^{3-}$, $[Co(en)_3]^{3+}$, $Cis-[Pt(en)_2Cl_2]^{+2}$, $[Co(en)_2Cl_2]^+$

22. NO₂ required for a reaction is produced by decomposition of N₂O₅ in CCl₄ as by equation $2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$

The initial concetration. of N_2O_5 is $3 \text{mol}L^{-1}$ and it is $2.75 \text{mol}L^{-1}$ after 30 minutes.

The rate of formation of NO₂ is $x \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$, value of x is (nearest integer) _____.

Ans. 17

$$\frac{1}{2} \frac{d[N_2O_5]}{dt} = -\frac{1}{4} \frac{d[NO_2]}{dt}$$
$$\frac{d[NO_2]}{dt} = -2 \frac{d[N_2O_5]}{dt}$$
$$\frac{d[NO_2]}{dt} = -2 \frac{(3-2.75)}{30}$$
$$\frac{d[NO_2]}{dt} = \frac{2 \times 0.25}{30}$$
$$= 1.667 \times 10^{-2}$$
$$= 16.67 \times 10^{-3}$$
$$x \approx 17 \times 10^{-3}$$

23. Two reactions are given below:

$$2\operatorname{Fe}_{(s)} + \frac{3}{2}\operatorname{O}_{2(g)} \to \operatorname{Fe}_{2}\operatorname{O}_{3(s)}, \Delta \operatorname{H}^{\circ} = -822 \,\mathrm{kJ} \,/ \,\mathrm{mol}$$
$$\operatorname{C}_{(s)} + \frac{1}{2}\operatorname{O}_{2(g)} \to \operatorname{CO}_{(g)}, \Delta \operatorname{H}^{\circ} = -110 \,\mathrm{kJ} \,/ \,\mathrm{mol}$$

Then enthalpy change for following reaction $3C_{(s)} + Fe_2O_{3(s)} \rightarrow 2Fe_{(s)} + 3CO_{(g)}$ is _____ kJ/mol.

Ans. 492

By Hess law $2 \text{ Fe} + \frac{3}{2} O_2 \rightarrow \text{Fe}_2 O_3$ $\Delta H^\circ = -822 \text{ KJ } \dots (1)$ $C + \frac{1}{2} O_2 \rightarrow CO$ $\Delta H^\circ = -110 \text{ KJ/mol } \dots (2)$ Fe₂O₃ $\rightarrow 2 \text{ Fe} + 3/2 O_2$ $\Delta H^\circ = 822 \text{ KJ } \dots (3)$ eq. (2) multiply by 3 $3C + \frac{3}{2} O_2 \rightarrow 3 \text{ CO}$ $\Delta H^\circ = -330 \text{ KJ } \dots (4)$ eq. (3)+(4) $3C + \text{Fe}_2 O_3 \rightarrow 2 \text{Fe} + 3 \text{CO}$ $\Delta H = 492 \text{ KJ/mol}$

24. The total number of correct statements, regarding the nucleic acids is

- A. RNA is regarded as the reserve of genetic information
- B. DNA molecule self-duplicates during cell division
- C. DNA synthesizes proteins in the cell
- D. The message for the synthesis of particular proteins is present in DNA
- E. Identical DNA strands are transferred to daughter cells.

Ans. 3

А	В	С	D	E
(False)	(True)	(False)	(True)	(True)

25. The pH of an aqueous solution containing 1 M benzoic acid $(pK_a = 4.20)$ and 1 M sodium benzoate is 4.5. The volume of benzoic acid solution in 300 mL of this buffer solution is _____ mL. (given : log 2 = 0.3)

JEE MAIN

2024

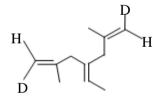
Ans. 100

$$pH=pK_{a}+log \frac{(V_{salt})}{(V_{acid})}$$

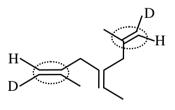
$$4.5=4.2+log \frac{(V_{salt})}{(V_{acid})}$$

$$log \frac{(V_{salt})}{(V_{acid})} = 0.3$$

$$\frac{(V_{salt})}{(V_{acid})} = 2 \qquad \dots \dots (Eq. 1)$$


$$V_{salt} + V_{acid} = 300 \text{ ml} \qquad \dots \dots (Eq. 2)$$

$$By Eq. (1) \& (2)$$


$$V_{salt} = 200 \text{ ml}$$

$$V_{acid} = 100 \text{ ml}$$

26. Number. of geometrical isomers possible for the given structure is/are _____.

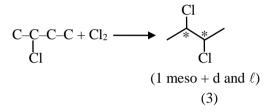
(E, E) (E, Z) (Z, Z) (Z, E)

27. Total number of species from the following which can undergo disproportionation reaction is ______. $H_2O_2, ClO_3^-, P_4, Cl_2, Ag, Cu^{+1}, F_2, NO_2, K^+$

Ans. 6

Intermediate oxidation state of element can undergo disproportionation reaction H_2O_2 , ClO_3^- , P_4 , Cl_2 , Cu^+ , NO_2

28. Number of metal ions characterized by flame test among the following is ______.


Ans. 4

Metal ions (Ca²⁺, Sr²⁺, Ba²⁺Cu²⁺) responds flame test

29. 2-chlorobutane $+Cl_2 \rightarrow C_4H_8Cl_2$ (isomers)

Total number of optically active isomers shown by $C_4H_8Cl_2$, obtained in the above reaction is _____.

Ans. 3

30. Number of spectral lines obtained in He⁺ spectra, when an electron makes transition from fifth excited state to first excited state will be

Ans. 10

Fifth excited state $n_2=6$ first excited state $n_1=2$

Number of spectra line
$$\frac{\left[\left(n_{2}-n_{1}\right)\right]\left[\left(n_{2}-n_{1}\right)+1\right]}{2}$$

$$=\frac{(6-2)(6-2+1)}{2}$$
$$=\frac{4\times 5}{2}=\frac{20}{2}=10$$

Continuing to keep the pledge of **imparting education** for the **last 17 Years**

Most Promising RANKS Produced by MOTION Faculties Nation's Best SELECTION Percentage (%) Ratio

NEET/AIIMS

8

(Under 50000 Rank)

ΜοτίοΝ