JEE MAIN 2024 Paper with Solution

Chemistry $\mid 30^{\text {th }}$ January 2024 _ Shift-1

Motílon

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP

SECTION - A

1. Given below are two statements :

Statements I : The gas liberated on warming a salt with dil $\mathrm{H}_{2} \mathrm{SO}_{4}$, turns a piece of paper dipped in lead acetate into black, it is a confirmatory test for sulphide ion.
Statements II : In statement-I the colour of paper turns black because of formation of lead sulphite.
In the light of the above statements, choose the most appropriate from the options given below :
(1) Both Statement I and Statement II are false
(2) Statement I is false but Statement II is true
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are true

Ans. 3

$$
\mathrm{Na}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{~S}
$$

$$
\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{PbS}+2 \mathrm{CH}_{3} \mathrm{COOH}
$$

Black lead sulphide
2.

This reduction reaction is known as :
(1) Rosenmund reduction
(2) Wolff-Kishner reduction
(3) Stephen reduction
(4) Etard reduction

Ans. 1

Rosenmund reduction

a)

Wolff Kishner
b)

Stephen reduction
(c)

Etard reduction
(d)

3. Sugar which does not give reddish brown precipitate with Fehling's reagent is :
(1) Sucrose
(2) Lactose
(3) Glucose
(4) Maltose

Ans. 1
Sucrose is non reducing sugar and does not contain free aldehyde group thus does not give reddish brown ppt with fehling reagent.
4. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : There is a considerable increase in covalent radius from N to P. However from As to Bi only a small increase in covalent radius is observed.

Reason (R) : Covalent and ionic radii in a particular oxidation state increases down the group.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) (A) is false but (R) is true
(2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(3) (A) is true but (R) is false
(4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Ans. 2
Statement - I Factual data
According to NCERT
Statement - II True
5. Which of the following molecule/species is most stable?
(1)

(2)

(3)

(4)

An.s 1
Stability order Aromatic > Non Aromatic > Anti aromatic
(1)

$2 \pi \mathrm{e}^{-}$
Huckel rule aromatic
(2)

$4 \pi \mathrm{e}^{-}$
Anti
(3)

Carbene
(4)

Non aromatic
6. Diamagnetic Lanthanoid ions are :
(1) $\mathrm{Nd}^{3+} \& \mathrm{Eu}^{3+}$
(2) $\mathrm{La}^{3+} \& \mathrm{Ce}^{4+}$
(3) $\mathrm{Nd}^{3+} \& \mathrm{Ce}^{4+}$
(4) $\mathrm{Lu}^{3+} \& \mathrm{Eu}^{3+}$

Ans. 2
$\mathrm{Ce} \rightarrow[\mathrm{Xe}] 4 \mathrm{f}^{1} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
$\mathrm{Ce}^{4+} \Rightarrow$ Diamagnetic
$\mathrm{La} \rightarrow[\mathrm{Xe}] 4 \mathrm{f}^{0} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
$\mathrm{La}^{3+} \Rightarrow$ Diamagnetic

Motílon

7. Aluminium chloride in acidified aqueous solution forms an ion having geometry :
(1) Octahedral
(2) Square planar
(3) Tetrahedral
(4) Trigonal bipyramidal

Ans. 1
AlCl_{3} in acidified aqueous solution forms octahedral geometry $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
8. Given below are two statements :

Statement (I) : The orbitals having same energy are called as degenerate orbitals.
Statement (II) : In hydrogen atom, 3p and 3d orbitals are not degenerate orbitals.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is true but Statement II is false
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is false but Statement II is true

Ans. 1
For single electron species the energy depends on principal quantum number(n) only so statement -II is false.
9. Example of vinylic halide is :
(1)

(2)

(3)

(4)

Ans. 1
A)

B)

C)

Aryl halide
D)

10. Structure of 4-Methylpent-2-enal is :
(1)

(2)

(3)

(4)

Ans. 4

4-Methyl pent-2-enal
11. Match List - I with List - II.

List - I	List - II
Molecule	Shape

(A) BrF_{5}
(I) T-shape
(B) $\mathrm{H}_{2} \mathrm{O}$
(II) See saw
(C) ClF_{3}
(III) Bent
(D) SF_{4}
(IV) Square pyramidal

Choose the correct answer from the options given below :
(1) (A) - (I), (B) - (II), (C) - (IV), (D) - (III)
(2) (A) - (II), (B) - (I), (C) - (III), (D) - (IV)
(3) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
(4) (A) - (IV), (B) - (III), (C) - (I), (D) - (II)

Ans. 4

12. The final product A , formed in the following multistep reaction sequence is :

(1)

(2)

(3)

(4)

Motílon

Ans. 2

13. In the given reactions, identify the reagent A and reagent B.

(1) $\mathrm{A}-\mathrm{CrO}_{3}$
$\mathrm{B}-\mathrm{CrO}_{3}$
(2) $\mathrm{A}-\mathrm{CrO}_{3}$
B- $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(3) $\mathrm{A}-\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
B- $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(4) $\mathrm{A}-\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
$\mathrm{B}-\mathrm{CrO}_{3}$

Ans. 2

14. Given below are two statements : one is labelled as Assertion (A) and the other is labelled Reason (R).

Assertion (A) : $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$ is an example of allyl halide.
Reason (\mathbf{R}) : Allyl halides are the compounds in which the halogen atom is attached to sp^{2} hybridized carbon atom.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) (A) is true but (R) is false
(2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(3) (A) is false but (R) is true
(4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Ans. 1
$\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{Cl}$ is an example of allyl halide.
Allyl halide - Halogen atom is bonded to sp^{3} hybridised carbon atom adjacent to $\mathrm{C}=\mathrm{C}$ to an allyic carbon.

Motílon

15. What happens to freezing point of benzene when small quantity of naphthalene is added to benzene?
(1) Increases
(2) Remains unchanged
(3) First decreases and then increases
(4) Decreases

Sol. 4
When small amount of naphthalene is added to benzene, depression in freezing point takes place and freezing point of benzene decreases.
16. Match List I with List II :

List I (Species)		List II (Electronic distribution)	
A.	Cr^{+2}	I.	$3 \mathrm{~d}^{8}$
B.	Mn^{+}	II.	$3 \mathrm{~d}^{3} 4 \mathrm{~s}^{1}$
C.	Ni^{+2}	III.	$3 \mathrm{~d}^{4}$
D.	$\mathrm{V}+$	IV.	$3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$

Choose the correct answer from the options given below :
(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
(2) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
(3) (A) - (IV), (B) - (III), (C) - (I), (D) - (II)
(4) (A) - (II), (B) - (I), (C) - (IV), (D) - (III)

Ans. 2

$$
\begin{aligned}
& \mathrm{Cr} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}, \mathrm{Cr}^{2+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{4} \\
& \mathrm{Mn} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}, \mathrm{Mn}^{+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1} \\
& \mathrm{Ni} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}, \mathrm{Ni}^{2+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} \\
& \mathrm{~V} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}, \mathrm{~V}^{+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{1}
\end{aligned}
$$

17. Compound A formed in the following reaction reacts with B gives the product C. Find out A and B.

(1) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{C} \equiv \overline{\mathrm{C}}{ }^{+} \stackrel{+}{\mathrm{a}}, \mathrm{B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
(2) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
(3) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~B}=\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
(4) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{C} \equiv \stackrel{-}{\mathrm{C}} \mathrm{Na}, \mathrm{B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Ans. 1

Motílon

(A)

$\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}+\mathrm{NaBr}$
18. Following is a confirmatory test for aromatic primary amines. Identify reagent (A) and (B).

(1) $\mathrm{A}=\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$
(2) $\mathrm{A}=\mathrm{NaNO}_{2}+\mathrm{HCl}, 0-5^{\circ} \mathrm{C}$;

(3) $\mathrm{A}=\mathrm{NaNO}_{2}+\mathrm{HCl}, 0-5^{\circ} \mathrm{C}$;

(4) $\mathrm{A}=\mathrm{NaNO}_{2}+\mathrm{HCl}, 0-5^{\circ} \mathrm{C}$;

Ans. 4

(A)
19. The Lassiagne's extract is boiled with dil HNO_{3} before testing for halogens because,
(1) AgCN is soluble in HNO_{3}
(2) Silver halides are soluble in HNO_{3}
(3) $\mathrm{Ag}_{2} \mathrm{~S}$ is soluble in HNO_{3}
(4) $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN are decomposed by HNO_{3}

Ans. 4
If Nitrogen or Sulphur is present in the compound the sodium Fusion extract is boiled with concentrate HNO_{3} to decomposed sulphide or cyanide of sodium during lassiagne's test.
20. Choose the correct statements from the following :
(A) Ethane-1, 2-diamine is a chelating ligand.
(B) Metallic aluminium is produced by electrolysis of aluminium oxide in presence of cryolite.
(C) Cyanide ion is used as ligand for leaching of silver.
(D) Phosphine act as a ligand in Wilkinson catalyst.
(E) The stability constants of Ca^{2+} and Mg^{2+} are similar with EDTA complexes.

Choose the correct answer from the options given below :
(1) (B), (C), (E) only
(2) (C), (D), (E) only
(3) (A), (B), (C) only
(4) (A), (D), (E) only

Ans. 3
(A) (en) is chelating ligand
(B) Fact
(C) Fact

SECTION - B

21. The rate of First order reaction is $0.04 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at 10 minutes and $0.03 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at 20 minutes after initiatation. Half life of the reaction is \qquad minutes. $($ Given $\log 2=0.3010, \log 3=0.4771)$
Ans. 24
$\mathrm{r}_{1}=\mathrm{K}\left[\mathrm{A}_{1}\right]$
$0.04=\mathrm{K}\left[\mathrm{A}_{1}\right]$
$\mathrm{r}_{2}=\mathrm{K}\left[\mathrm{A}_{2}\right]$
$0.03=\mathrm{K}\left[\mathrm{A}_{2}\right]$
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{0.04}{0.03}=\frac{4}{3}$
let A_{1} be the intial and A_{2} be the final concentration after a given gap of 10 min
then $\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \left[\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\right]$
$\mathrm{K}=\frac{2.303}{10} \log \frac{4}{3}=2.855 \times 10^{-2} \mathrm{~min}^{-1}$
$\because \mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}=\frac{0.693}{2.855 \times 10^{-2}}=24.08$
$=24 \mathrm{~min}$.
22. The pH at which $\left.\mathrm{Mg}(\mathrm{OH})_{2}\left[\mathrm{~K}_{\mathrm{sp}}\right]=1 \times 10^{-11}\right]$ begins to precipitate from a solution containing $0.10 \mathrm{M} \mathrm{Mg}^{2+}$ ions is \qquad .
Ans. 9
$\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{K}_{\mathrm{sp}}$
[0.1] $\left[\mathrm{OH}^{-}\right]^{2}=1 \times 10^{-11}$
$\left[\mathrm{OH}^{-}\right]=10^{-5} \mathrm{M}$
$\mathrm{P}^{\mathrm{OH}}=-\log \left(10^{-5}\right)=5$
$\mathrm{pH}=14-\mathrm{P}^{\mathrm{OH}}$
$\mathrm{pH}=14-5=9$
(
An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$ as shown in the diagram above. The total work done in the process is
\qquad J.

Ans. 200
$\mathrm{W}=$ Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2}(30-10)(30-10)$
$=\frac{1}{2} \times 20 \times 20$
$=\frac{400}{2}=200 \mathrm{~J}$
24. If IUPAC name of an element is "Unununnium" then the element belongs to $\mathrm{n}^{\text {th }}$ group of Periodic table. The value of n is \qquad ـ.
Ans. 11
Atomic number $\rightarrow 111$
Group No. $\rightarrow 11^{\text {th }}$
25. The total number of molecular orbitals formed from 2 s and 2 p atomic orbitals of a diatomic molecule is \qquad _.
Ans. 8
Two molecular orbital $\sigma 2 \mathrm{~s}$ and $\sigma * 2 \mathrm{~s}$
six molecular orbital $\sigma 2 \mathrm{pz}, \sigma * 2 \mathrm{pz} \pi 2 \mathrm{px}, \pi^{*} 2 \mathrm{px}, \pi 2 \mathrm{py}, \pi * 2 \mathrm{py}$
Total $=2+6=8$
26. On a thin layer chromatographic plate, an organic compound moved by 3.5 cm , while the solvent moved by 5 cm . The retardation factor of the organic compound is \qquad $\times 10^{-1}$.
Ans. 7
$\mathrm{R}_{\mathrm{f}}($ retardation factor $)=\xrightarrow[\text { Distance travelled by solvent }]{\text { Distance travelled by solute }}$
$=\frac{3.5}{5}=0.7=7 \times 10^{-1}$
27. The compound formed by the reaction of ethanal with semicarbazine contains \qquad number of nitrogen atoms.
Ans. 3

$$
\stackrel{+}{\mathrm{H}_{2} \mathrm{O}}
$$

28. 0.05 cm thick coating of silver is deposited on a plate of $0.05 \mathrm{~m}^{2}$ area. The number of silver atoms deposited on plate are \qquad $\times 10^{23} .\left(\right.$ At mass $\left.\mathrm{Ag}=108, \mathrm{~d}=7.9 \mathrm{~g} \mathrm{~cm}^{-3}\right)$
Ans. 11
Volume of Ag deposited $=0.05 \times 10^{4} \mathrm{~cm}^{2} \times 0.05 \mathrm{~cm}$
$=25 \mathrm{~cm}^{3}$
Mass of Ag deposited $=\mathrm{V} \times \mathrm{d}$
Number of Ag atom $=\frac{\mathrm{V} \times \mathrm{d}}{108} \times \mathrm{N}_{\mathrm{A}}$
$=\frac{25 \times 7.9 \times 6.023 \times 10^{23}}{108}$
$=1.1 \times 10^{24}$
$=11 \times 10^{23}$
29. $2 \mathrm{MnO}_{4}^{-}+\mathrm{bI}^{-}+\mathrm{cH}_{2} \mathrm{O} \rightarrow \mathrm{xI}_{2}+\mathrm{yMnO}_{2}+\mathrm{z} \overline{\mathrm{O}} \mathrm{H}$

If the above equation is balanced with integer coefficients, the value of z is \qquad \ldots

Ans. 8
$2 \stackrel{+7}{\mathrm{MnO}_{4}^{-}}+\mathrm{bI}^{-1}+\mathrm{cH}_{2} \mathrm{O} \rightarrow \mathrm{xi}_{2}+\mathrm{y} \mathrm{MnO}_{2}+\mathrm{zOH}^{-}$
$\mathrm{n}_{\mathrm{f}}=3 \quad \mathrm{n}_{\mathrm{f}}=1$
$2 \mathrm{MnO}_{4}^{-}+6 \mathrm{I}^{-}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{I}_{2}+2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{-}$
30. The mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required to prepare 250 mL of 0.35 M aqueous solution is \qquad g. (Molar mass of $\mathrm{CH}_{3} \mathrm{COONa}$ is $82.02 \mathrm{~g} \mathrm{~mol}^{-1}$)

Ans. 7
$0.35 \mathrm{M} \Rightarrow 1000 \mathrm{ml}$ Solution contains 0.35 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ then 250 ml solution. contains $\frac{0.35}{1000} \times 250$ mole of $\mathrm{CH}_{3} \mathrm{COONa}$

$$
=0.0875 \mathrm{moles}
$$

Mass of $\mathrm{CH}_{3} \mathrm{COONa}=0.0875 \times 82.02$
$=7.17 \mathrm{gm}$
$=7 \mathrm{gm}$

Motion

JEE MAIN 2024

JEE Main + Advanced 2024 की तैयारी में रह रही है कमी?

Crash Course
STARTING FROM
7th Feb'24
OFFLINE
Rs. 9999

ONLINE
Rs. 4999

JEE Main 2024 Session 1
की तैयारी में रह रही है कमी?

Continuing to keep the pledge of imparting education for the last 17 Years

Most Promising RANKS
Produced by MOTION Faculties
NEET / AIIMS

JEE MAIN+ADVANCED

Nation's Best SELECTION
Percentage (\%) Ratio

(2023)
$6492 / 7084=91.64 \%$ (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANGED
(2023)

2747/5182 = 53.01\% (2022)
$1756 / 4818=36.45 \%$

Student Qualified in JEE MAIN
(2023)
$5993 / 8497=70.53 \%$
(2022)
$4818 / 6653=72.41 \%$

NITIN VIIJAY (NV Sir)
Founder \& CEO
Motílon

