JEE MAIN 2024 Paper with Solution

 PHYSICS \| 29 ${ }^{\text {th }}$ January 2024 _ Shift-1

 PHYSICS \| 29 ${ }^{\text {th }}$ January 2024 _ Shift-1}

Motílon

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP

SECTION - A

31. The de-Broglie wavelength of an electron is the same as that of a photon. If velocity of electron is 25% of the velocity of light, then the ratio of K.E. of electron and K.E. of photon will be:
(1) $\frac{1}{4}$
(2) $\frac{1}{1}$
(3) $\frac{8}{1}$
(4) $\frac{1}{8}$

Sol. 4
For photon, $\mathrm{E}=\frac{\mathrm{hC}}{\lambda_{\mathrm{p}}}$
$\lambda_{\mathrm{p}}=\frac{\mathrm{hC}}{\mathrm{E}_{\mathrm{p}}}$
for electron, $\lambda_{e}=\frac{h}{m_{e} v_{e} \times \frac{2}{2} \times \frac{v_{e}}{v_{c}}}$
$=\frac{h}{\frac{1}{2} m_{e} v_{e}^{2} \times \frac{2}{v_{e}}}$
$=\frac{\mathrm{h} \times \mathrm{v}_{\mathrm{e}}}{2 \mathrm{k}_{\mathrm{E}}}$
$=\frac{\mathrm{h} \frac{\mathrm{c}}{4}}{2 \mathrm{kE}_{\mathrm{e}}}$
$\lambda_{\mathrm{e}}=\frac{\mathrm{hC}}{8 \mathrm{kE}_{\mathrm{e}}}$
given :- $\lambda_{\mathrm{e}}=\lambda_{\mathrm{p}}$
$\frac{\mathrm{hC}}{8 \mathrm{kE}_{\mathrm{e}}}=\frac{\mathrm{hC}}{\mathrm{E}_{\mathrm{p}}}$
$\frac{1}{8}=\frac{\mathrm{kE}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}}}$
32. If the radius of curvature of the path of two particles of same mass are in the ratio 3:4, then in order to have constant centripetal force, their velocities will be in the ratio of:
(1) $1: \sqrt{3}$
(2) $\sqrt{3}: 1$
(3) $\sqrt{3}: 2$
(4) $2: \sqrt{3}$

Sol. 3
$\mathrm{F}_{1}=\mathrm{F}_{2}$
$\frac{\mu / \mathrm{v}_{1}^{2}}{\mathrm{R}_{1}}=\frac{\mu \mu \mathrm{v}_{2}^{2}}{\mathrm{R}_{2}}$
$\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{2}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
$\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\left(\frac{3}{4}\right)^{\frac{1}{2}}=\frac{\sqrt{3}}{2}$

Motílon

33. A thermodynamic system is taken from an original state A to an intermediate state B by a linear process as shown in the figure. It's volume is then reduced to the original value from B to C by an isobaric process. The total work done by the gas from A to B and B to C would be :

(1) 2200 J
(2) 1200 J
(3) 33800 J
(4) 600 J

Sol. Bonus

Work done from A to B
$=$ area under line AB
$=$ area of trapezium
$=\frac{1}{2} \times(8000+4000)\left(\right.$ dyne $\left./ \mathrm{cm}^{2}\right) \times 4 \mathrm{~m}^{3}$
$=12000 \times \frac{10^{-5} \mathrm{~N}}{10^{-4} \mathrm{~m}^{2}} \times \mathrm{m}^{3} \times 2$
$=2400 \mathrm{~J}$
Work done from B to C
$=$ area under line BC
$=4000\left(\right.$ dyne $\left./ \mathrm{cm}^{2}\right) \times 4 \mathrm{~m}^{3}$
$=4000 \times \frac{10^{-5}}{10^{-4}} \times 4$
$=1600 \mathrm{~J}$ (-ve work)
total $=2400-1600=800 \mathrm{~J}$
34. A body starts moving from rest with constant acceleration covers displacement S_{1} in first (p-1) seconds and S_{2} in first p seconds. The displacement $S_{1}+S_{2}$ will be made in time:
(1) $\sqrt{\left(2 p^{2}-2 p+1\right)}$ s
(2) $\left(2 p^{2}-2 p+1\right) s$
(3) $(2 p+1) s$
(4) $(2 p-1) s$

Sol. 1
$S_{1}=\frac{1}{2} a(p-1)^{2}=\frac{1}{2} a\left(p^{2}+1-2 p\right)$
$\mathrm{S}_{2}=\frac{1}{2} \mathrm{ap}^{2}$
$\mathrm{S}_{1}+\mathrm{S}_{2}=\frac{1}{2} \mathrm{ap}^{2}+\frac{1}{2} \mathrm{ap}^{2}+\frac{\mathrm{a}}{2}-\mathrm{ap}$
$\frac{1}{2} \mathrm{at}^{2}=\mathrm{ap}^{2}-\mathrm{ap}+\frac{\mathrm{a}}{2}$
$\mathrm{t}^{2}=\frac{2 \not \partial}{\not \partial}\left(\mathrm{p}^{2}-\mathrm{p}+\frac{1}{2}\right)$
$\mathrm{t}=\sqrt{2\left(\mathrm{p}^{2}-\mathrm{p}+\frac{1}{2}\right)}$
$=\sqrt{2 \mathrm{p}^{2}-2 \mathrm{p}+1}$
35. Given below are two statements:

Statement I : If a capillary tube is immersed first in cold water and then in hot water, the height of capillary rise will be smaller in hot water.
Statement II : If a capillary tube is immersed first in cold water and then in hot water, the height of capillary rise will be smaller in cold water.
In the light of the above statements, choose the most appropriate from the options given below
(1) Statement I is false but Statement II is true
(2) Both Statement I and Statement II are false
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are true

Sol. 3
$\mathrm{h}=\frac{2 \mathrm{~T} \cos \theta}{\rho \mathrm{gr}}$
as temperature increases surface tension decreases so h decreases.
36. Match List I with List II

LIST I		LIST II	
A.	$\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}=\mu_{0} \mathrm{i}_{\mathrm{c}}+\mu_{0} \varepsilon_{0} \frac{\mathrm{~d} \phi_{\mathrm{E}}}{\mathrm{dt}}$	I.	Gauss law for electricity
B.	$\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dl}}=\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$	II.	Gauss law for magnetism
C.	$\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dA}}=\frac{\mathrm{Q}}{\varepsilon_{0}}$	III.	Faraday law
D.	$\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dA}}=0$	IV.	Ampere - Maxwell law

Choose the correct answer from the options given below :
(1) A-II, B=III, C-I, D-IV
(2) A-IV, B=I, C-III, D-II
(3) A-IV, B=III, C-I, D-II
(4) A-I, B=II, C-III, D-IV

Sol. 3
37. The explosive in a Hydergine bomb is a mixture of ${ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}$ and ${ }_{3} \mathrm{Li}^{6}$ in some condensed form. The chains reaction is given by

$$
\begin{aligned}
& { }_{3} \mathrm{Li}^{6}+{ }_{0} \mathrm{nl} \rightarrow{ }_{2} \mathrm{He}^{4}+{ }_{1} \mathrm{H}^{3} \\
& { }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{3} \rightarrow{ }_{2} \mathrm{He}^{4}+{ }_{0} \mathrm{n}^{1}
\end{aligned}
$$

During the explosion the energy released is approximately
[Given ; $\mathrm{M}(\mathrm{Li})=6.01690 \mathrm{amu}, \mathrm{M}\left({ }_{1} \mathrm{H}^{2}\right)=2.01471 \mathrm{amu}, \mathrm{M}\left({ }_{2} \mathrm{He}^{4}\right)=4.00388 \mathrm{amu}$, and $1 \mathrm{amu}=931.5 \mathrm{MeV}$]
(1) 28.12 MeV
(2) 16.48 MeV
(3) 12.64 MeV
(4) 22.22 MeV

Sol. 4

${ }_{3} \mathrm{~L}_{\mathrm{i}}{ }^{6}+{ }_{0} \not K^{1} \rightarrow_{2} \mathrm{He}^{4}+{ }_{\chi} \mathrm{H}^{\text {S }}$
$\frac{{ }_{1} \mathrm{H}^{2}+{ }_{\chi} \mathrm{HH}^{\text {b }} \rightarrow 2 \mathrm{H}_{\mathrm{e}}{ }^{4}+{ }_{0} \not \text { म1 }^{1}}{{ }_{3}{ }^{6}{ }_{1}{ }_{1} \mathrm{H}^{2} \rightarrow 2{ }_{2} \mathrm{H}_{\mathrm{e}}{ }^{4}}$
$\Delta \mathrm{m}=\left[\mathrm{M}\left(\mathrm{L}_{\mathrm{i}}\right)+\mathrm{M}(\mathrm{H})\right]-[2 \mathrm{M}(\mathrm{He})]$

Motíon

$=[6.01690+2.01471]-[2 \times 4.00388]$
$=8.03161-8.00776$
$\Delta \mathrm{m}=0.02385$
$\mathrm{E}=\Delta \mathrm{m} \times 931.5 \mathrm{Mev}$
$=22.22 \mathrm{MeV}$
38. Two vessels A and B are of the same size and are at same temperature A contains 1 g of hydrogen and B contains 1 g of oxygen. P_{A} and P_{B} are the pressures of the gases in A and B respectively, then $\frac{\mathrm{P}_{A}}{\mathrm{P}_{\mathrm{B}}}$ is :
(1) 8
(2) 16
(3) 32
(4) 4

Sol. 2

$\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}}$
as $\mathrm{T} \& \mathrm{~V}$ are same so
$\mathrm{P} \propto \mathrm{n}$
$\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}}=\frac{\lg \times 32}{2 \times 1 \mathrm{~g}}=16$
39. A galvanometer having coil resistance 10Ω shows a full scale deflection for a current of 3 mA . For it to measure a current of 8 A , the value of the shunt should be:
(1) $4.85 \times 10^{-3} \Omega$
(2) $3 \times 10^{-3} \Omega$
(3) $3.75 \times 10^{-3} \Omega$
(4) $2.75 \times 10^{-3} \Omega$

Sol. 1

$\mathrm{S} \times(8-0.003)=0.003 \times 10$
$\mathrm{S}=\frac{0.03}{7.997}$
$=3.75 \times 10^{-3} \Omega$
40. A convex mirror of radius of curvature 30 cm forms an image that is half the size of the object. The object distance is :
(A) -15 cm
(B) -45 cm
(C) 45 cm
(D) 15 cm

Sol. 1

$m=\frac{f}{f-u} \quad\left(f=\frac{R}{2}\right)$
$+\frac{1}{2}=\frac{+15}{15-u}$
$15-u=30$
$15-30=u$
$\mathrm{u}=-15 \mathrm{~cm}$
41. A biconvex lens of refractive index 1.5 has a focal length of 20 cm in air. Its focal length when immersed in a liquid of refractive index 1.6 will be:
(1) -16 cm
(2) +16 cm
(3) 160 cm
(4) -160 cm

Sol. 4

$$
\begin{align*}
& \mathrm{f}=\frac{\mathrm{R}}{2\left(\frac{\mu_{\mathrm{L}}}{\mu_{\mathrm{S}}}-1\right)} \\
& 20=\frac{\mathrm{R}}{2(1.5-1)} \tag{1}
\end{align*}
$$

$\mathrm{f}^{\prime}=\frac{\mathrm{R}}{2\left(\frac{1.5}{1.6}-1\right)}$
$\frac{20}{\mathrm{f}^{\prime}}=\frac{(1.5-1.6) / 1.6}{1.5-1}$
$\frac{20}{\mathrm{f}^{\prime}}=\frac{-0.1}{1.6} \times \frac{1}{0.5} \Rightarrow \mathrm{f}^{\prime}=-160 \mathrm{~cm}$
42. The electric current through a wire varies with time as $I=I_{0}+\beta$ t, where $I_{0}=20 \mathrm{~A}$ and $\beta=3 \mathrm{~A} / \mathrm{s}$. The amount of electric charge crossed through a section of the wire in 20 s is :
(1) 1600 C
(2) 800 C
(3) 80 C
(4) 1000 C

Sol. 4

$$
\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}
$$

$\int_{0}^{\mathrm{Q}} \mathrm{dq}=\int_{0}^{20} \mathrm{idt}$
$=\int_{0}^{20}\left(\mathrm{i}_{0}+\beta \mathrm{t}\right) \mathrm{dt}$
$=\int_{0}^{20}(20+3 t) d t$
$=20[\mathrm{t}]_{0}^{20}+3\left[\frac{\mathrm{t}^{2}}{2}\right]_{0}^{20}$
$=400+\frac{3}{2}\left[20^{2}-0\right]$

Motílon

$=400+600=1000 \mathrm{C}$
43. The deflection in moving coil galvanometer falls from 25 divisions to 5 division when a shunt of 24Ω is applied. The resistance of galvanometer coil will be :
(1) 100Ω
(2) 48Ω
(3) 12Ω
(4) 96Ω

Sol. 4
$\mathrm{i} \propto \theta$
$\frac{\mathrm{i}_{\mathrm{g}}}{\mathrm{i}}=\frac{5}{25}$
$5 i_{\mathrm{g}}=\mathrm{i}$
Potential is same across galvanometer shunt

$\mathrm{Si}_{5}=\mathrm{i}_{\mathrm{g}} \mathrm{G}$
$\mathrm{S}\left(\mathrm{i}-\mathrm{i}_{\mathrm{g}}\right)=\mathrm{i}_{\mathrm{g}} \mathrm{G}$
$24\left(5 \mathrm{i}_{\mathrm{g}}-\mathrm{i}_{\mathrm{g}}\right)=\mathrm{i}_{\mathrm{g}} \mathrm{G}$
$24 \times 4 \mathrm{i}_{\mathrm{g}}=\mathrm{i}_{\mathrm{g}} \mathrm{G}$
$\mathrm{G}=24 \times 4=96$
44. A block of mass 100 kg slides over a distance of 10 m on a horizontal surface. If the co-efficient of friction between the surfaces is 0.4 , then the work done against friction (in J) is :
(1) 4000
(2) 3900
(3) 4200
(4) 4500

Sol. 1
W.D $=\mathrm{f}_{\mathrm{s} .}$ s
W.D $=\mu \mathrm{mg}(10)$
$=(0.4)(100)(10)(10)$
W.D = 4000 J
W.D Against friction $=4000 \mathrm{~J}$

10 m.
45. Two charges of $5 Q$ and $-2 Q$ are situated at the points $(3 a, 0)$ and $(-5 a, 0)$ respectively. The electric flux through a sphere of radius '4a' having center at origin is :
(1) $\frac{3 Q}{\varepsilon_{0}}$
(2) $\frac{5 Q}{\varepsilon_{0}}$
(3) $\frac{7 Q}{\varepsilon_{0}}$
(4) $\frac{2 Q}{\varepsilon_{0}}$

Sol. 2

gauss law,
$\phi=\frac{\mathrm{q}_{\text {in }}}{\epsilon_{0}}=\frac{5 \mathrm{q}}{\epsilon_{0}}$
46. A capacitor of capacitance $100 \mu \mathrm{~F}$ is charged to a potential of 12 V and connected to a 6.4 mH inductor to produce oscillations. The maximum current in the circuit would be :
(1) 1.2 A
(2) 1.5 A
(3) 3.2 A
(4) 2.0 A

Sol. 2
$\frac{\mathrm{Q}_{\text {max }}}{2 \mathrm{C}}=\frac{1}{2} \mathrm{Li}^{2}$
$\mathrm{C}=100 \mu \mathrm{f}, \quad \mathrm{V}=12 \mathrm{~V}$.
$\mathrm{L}=6.4 \times 10^{-3}$,
$\mathrm{Q}_{\text {max }}=\mathrm{CV}$
$=\frac{\left(100 \times 10^{-6} \times 12\right)^{2}}{\not 2 \times 100 \times 10^{-6}}=\frac{1}{\not 2} \times 6.4 \times 10^{-3} \times \mathrm{i}^{2}$
$\frac{12^{2} \times 10^{-8-3}}{10^{-4}}=6.4 \times 10^{-3} \times \mathrm{i}^{2}$
$\sqrt{\frac{12^{2} \times 10^{-1}}{6.4}}=\mathrm{i} \sqrt{2.25}$
$i=1.25$
47. In the given circuit, the breakdown voltage of the Zener diode is 3.0 V . What is the value of I_{z} ?

(1) 7 mA
(2) 5.5 mA
(3) 10 mA
(4) 3.3 mA

Sol. 4

Motílon

48. At what distance above and below the surface of the earth a body will have same weight. (take radius of earth as R.)
(1) $\frac{R}{2}$
(2) $\sqrt{5} \mathrm{R}-\mathrm{R}$
(3) $\frac{\sqrt{3} R-R}{2}$
(4) $\frac{\sqrt{5} R-R}{2}$

Sol. 4
$\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{x})^{2}}=\frac{\mathrm{GMm}(\mathrm{R}-\mathrm{x})}{\mathrm{R}^{3}}$
$\mathrm{R}^{3}=(\mathrm{R}+\mathrm{x})^{2}(\mathrm{R}-\mathrm{x})$
$\mathrm{R}^{3}=\left(\mathrm{R}^{2}-\mathrm{x}^{2}\right)(\mathrm{R}+\mathrm{x})$
$x^{2}+R x-R^{2}=0$
$x=\frac{-R \pm \sqrt{R+4 R^{2}}}{2}$
$x=\frac{\sqrt{5} R-R}{2}$
49. The resistance $R=\frac{V}{I}$ where $V=(200 \pm 5) \mathrm{V}$ and $\mathrm{I}=(20 \pm 0.2) \mathrm{A}$, the percentage error in the measurement of R is :
(1) 3.5%
(2) 5.5%
(3) 7%
(4) 3%

Sol. 1
$\mathrm{V}=(200 \pm 5)$ vol. $\quad \mathrm{I}=(20 \pm 0.2) \mathrm{A}$
$\%$ error $=\frac{\mathrm{dV}}{\mathrm{V}}+\frac{\mathrm{dI}}{\mathrm{I}} \quad \mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$
$=\left(\frac{5}{200}+\frac{0.2}{20}\right) \times 100$
$=3.5 \%$
50. The potential energy function (in J) of a particle in a region of space is given as $U=\left(2 x^{2}+3 y^{3}+2 z\right)$. Here x, y and z are in meter. The magnitude of x -component of force $(\mathrm{in} \mathrm{N})$ acting on the particle at point $\mathrm{P}(1,2,3) \mathrm{m}$ is :
(1) 6
(2) 2
(3) 8
(4) 4

Sol. 4

$$
u=2 x^{2}+3 y^{3}+2 z,
$$

$F=-\left[\frac{\partial}{\partial x}\left(2 x^{2}\right) \hat{i}+\frac{\partial}{\partial y}\left(3 y^{3}\right) \hat{\mathrm{j}}+\frac{\partial}{\partial \mathrm{z}}(2 z) \hat{\mathrm{k}}\right]$
sss
$\overrightarrow{\mathrm{F}}(1,2,3)=-4(1) \hat{\mathrm{i}}-9(2)^{2} \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\vec{F}_{\text {net }}=-4 \hat{\mathrm{i}}-36 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\left|\overrightarrow{\vec{F}}_{\mathrm{x}}\right|=4$

SECTION - B

51. When the displacement of a simple harmonic oscillator is one third of its amplitude, the ratio of total energy to the kinetic energy is $\frac{x}{8}$, where $x=$ \qquad .
Sol. 9
Total energy $=\frac{1}{2} \mathrm{kA}^{2}$
$u=\frac{1}{2} K\left(\frac{A}{3}\right)^{2}=\frac{K A^{2}}{2 \times 9}=\frac{E}{9}$
$K E=E-\frac{E}{9}=\frac{8 E}{9}$
Ratio, $\frac{\text { total }}{\mathrm{KE}}=\frac{\mathrm{E}}{\frac{8 \mathrm{E}}{9}}=\frac{9}{8}$
$x=9$
52. A square loop of side 10 cm and resistance 0.7Ω is placed vertically in east-west plane. A uniform magnetic field of 0.20 T is set up across the plane in north east direction. The magnetic field is decreased to zero in 1 s at a steady rate. Then, magnitude of induced emf is $\sqrt{x} \times 10^{-3} \mathrm{~V}$. The value of x is \qquad .
Sol. 2

$\overrightarrow{\mathrm{A}}=(0.1)^{2} \hat{\mathrm{j}}$
$\vec{B}=\frac{0.2}{\sqrt{2}} \hat{\mathrm{i}}+\frac{0.2}{\sqrt{2}} \hat{\mathrm{j}}$
Mag. of Emf,
$\mathrm{e}=\frac{\Delta \phi}{\Delta \mathrm{t}}=\frac{\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{A}}-0}{1}=\sqrt{2} \times 10^{-3} \mathrm{~V}$
$\mathrm{x}=2$
53. In a test experiment on a model aeroplane in wind tunnel, the flow speeds on the upper and lower surfaces of the wings are $70 \mathrm{~ms}^{-1}$ and $65 \mathrm{~ms}^{-1}$ respectively. If the wing area is $2 \mathrm{~m}^{2}$, the lift of the wing is \qquad N . (Given density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$)

Sol. 810
$\mathrm{F}=\frac{1}{2} \rho\left(\mathrm{v}_{1}^{2}-\mathrm{V}_{2}^{2}\right) \mathrm{A}$
$==\frac{1}{2} \times 1.2 \times\left[70^{2}-65^{2}\right] \times 2$
$\overrightarrow{\mathrm{F}}-=810 \mathrm{~N}$
54. A 16Ω wire is bend to form a square loop. A 9 V battery with internal resistance 1Ω is connected across one of its sides. If a $4 \mu \mathrm{~F}$ capacitor is connected across one of its diagonals, the energy stored by the capacitor will be $\frac{\mathrm{x}}{2} \mu \mathrm{~J}$, where $\mathrm{x}=$ \qquad -.
Sol. 81

$\mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{eq}}}=\frac{9}{1+\frac{12 \times 4}{12+4}}=\frac{9}{4}$
$i_{1}=\frac{9}{4} \times \frac{4}{16}=\frac{9}{16}$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=\mathrm{i}_{1} \times 8=\frac{9}{16} \times 8=\frac{9}{2} \mathrm{~V}$
$\mathrm{u}=\frac{1}{2} \times 4 \times \frac{81}{4}=\frac{81}{2} \mathrm{uJ}$
$\mathrm{x}=81$
55. The magnetic potential due to a magnetic dipole at a point on its axis situated at a distance of 20 cm from its center is $1.5 \times 10^{-5} \mathrm{Tm}$. The magnetic moment of the dipole is \qquad Am^{2}. (Given :
$\frac{\mu_{0}}{4 \pi}=10^{-7} \mathrm{TmA}^{-1}$)
Sol. 6
$\mathrm{V}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{\mathrm{r}^{2}}$
$\Rightarrow 1.5 \times 10^{-5}=10^{-7} \times \frac{\mathrm{M}}{\left(20 \times 10^{-2}\right)^{2}}$
$\mathrm{m}=\frac{1.5 \times 10^{-5} \times 20 \times 20 \times 10^{-4}}{10^{-7}}$
$\mathrm{M}=1.5 \times 4=6$
56. A ball rolls off the top of a stairway with horizontal velocity u. The steps are 0.1 m high and 0.1 m wide. The minimum velocity u with which that ball just hits the step 5 of the stairway will be $\sqrt{\mathrm{x}} \mathrm{ms}^{-1}$ where $\mathrm{x}=$ \qquad [use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$].
Sol. 2

the ball needs to just cross 4 steps to just hit $5^{\text {th }}$ step
\therefore horizontal range $(\mathrm{R})=0.4 \mathrm{~m}$
$\mathrm{R}=\mathrm{u} . \mathrm{t}$
Similarly in vertical direction
$\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}$
$0.4=\frac{1}{2} \mathrm{gt}^{2}$
$0.4=\frac{1}{2} \mathrm{~g}\left(\frac{0.4}{4}\right)^{2}$
$u^{2}=2$
$\mathrm{u}=\sqrt{2} \mathrm{~m} / \mathrm{s}, \mathrm{x}=2$
57. An electron is moving under the influence of the electric field of a uniformly charged infinite plane sheet S having surface charge density $+\sigma$. The electron at $t=0$ is at a distance of 1 m from S and has a speed of $1 \mathrm{~m} / \mathrm{s}$. The maximum value of σ if the electron strikes S at $\mathrm{t}=1 \mathrm{~s}$ is $\alpha\left[\frac{\mathrm{m} \epsilon_{0}}{\mathrm{e}}\right] \frac{\mathrm{C}}{\mathrm{m}^{2}}$, the value of α is \qquad .
Sol. 8
$\mathrm{u}=1 \mathrm{~m} / \mathrm{s}, \mathrm{a}=-\frac{\sigma \mathrm{e}}{2 \varepsilon_{0} \mathrm{~m}}$
$\mathrm{t}=1 \mathrm{sec}$
$\mathrm{s}=-1 \mathrm{~m}$
using $\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$
$-1=1 \times 1+\left(-\frac{1}{2}\left(\frac{\sigma \mathrm{e}}{2 \varepsilon_{0} \mathrm{~m}}\right)\right)(1)^{2}$
$\alpha=\frac{8 \varepsilon . m}{e}$
$\alpha=8$

Motílon

58. A cylinder is rolling down on an inclined plane inclination 60°. It's acceleration during rolling down will be $\frac{\mathrm{x}}{\sqrt{3}} \mathrm{~m} / \mathrm{s}^{2}$, where $\mathrm{x}=$ \qquad (use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$). Given -

Sol. 10

for rolling motion
$\mathrm{a}=\frac{\mathrm{g} \sin \theta}{1+\frac{\mathrm{I}_{\mathrm{COM}}}{\mathrm{MR}^{2}}}$
$\mathrm{a}=\frac{\mathrm{g} \sin \theta}{1+\frac{1}{2}}=\frac{2 \times 10 \times \frac{\sqrt{3}}{2}}{3}$
$=\frac{10}{\sqrt{3}}=x=10$
59. In a double slit experiment shown in figure, when light of wavelength 400 nm is used, dark fringe is observed at P. If $D=0.2 \mathrm{~m}$, the minimum distance between the slits S_{1} and S_{2} is \qquad mm .

Sol. 0.20
Path diff. for minima at P
$2 \sqrt{D^{2}+d^{2}}-2 D=\frac{\lambda}{2}$
$\therefore \sqrt{\mathrm{D}^{2}+\mathrm{d}^{2}}-\mathrm{D}=\frac{\lambda}{4}$
$\sqrt{\mathrm{D}^{2}+\mathrm{d}^{2}}=\frac{\lambda}{4}+\mathrm{D}$
$\mathrm{D}^{2}+\mathrm{d}^{2}=\mathrm{D}^{2}+\frac{\lambda^{2}}{16}+\frac{\lambda \mathrm{D}}{2}$
$\mathrm{d}^{2}=\frac{\mathrm{D} \lambda}{2}+\frac{\lambda^{2}}{16}$
$\mathrm{d}^{2}=\frac{0.2 \times 400 \times 10^{-9}}{2}+\frac{4 \times 10^{-14}}{4}$
$\mathrm{d}^{2} \approx 400 \times 10^{-10} \quad \therefore \mathrm{~d}=20 \times 10^{-5}$
$\mathrm{d}=0.20 \mathrm{~mm}$
60. When a hydrogen atom going $\mathrm{n}=2$ to $\mathrm{n}=1$ emits a photon, its recoil speed is $\frac{\mathrm{x}}{5} \mathrm{~m} / \mathrm{s}$. Where $\mathrm{x}=$ (Use, mass of hydrogen atom $=1.6 \times 10^{-27} \mathrm{~kg}$) Given -
Sol. 17
Recoil speed
$\mathrm{V}=\frac{\Delta \mathrm{E}}{\mathrm{mC}}$
$=\frac{10.2 \mathrm{eV}}{1.6 \times 10^{-27} \times 3 \times 10^{8}}$
$=\frac{10.2 \times 1.6 \times 10^{-19}}{1.6 \times 10^{-27} \times 3 \times 10^{8}}$
$=\mathrm{V}=3.4 \mathrm{~m} / \mathrm{s}=\frac{17}{5} \mathrm{~m} / \mathrm{s}$
$\mathrm{x}=17$

Motion

JEE MAIN 2024

JEE Main + Advanced 2024 की तैयारी में रह रही है कमी?

Crash Course
STARTING FROM
7th Feb'24
OFFLINE
Rs. 9999

ONLINE
Rs. 4999

JEE Main 2024 Session 1
की तैयारी में रह रही है कमी?

Continuing to keep the pledge of imparting education for the last 17 Years

Most Promising RANKS
Produced by MOTION Faculties
NEET / AIIMS

JEE MAIN+ADVANCED

Nation's Best SELECTION
Percentage (\%) Ratio

(2023)
$6492 / 7084=91.64 \%$ (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANGED
(2023)

2747/5182 = 53.01\%
(2022)
$1756 / 4818=36.45 \%$

Student Qualified in JEE MAIN
(2023)
$5993 / 8497=70.53 \%$
(2022)
$4818 / 6653=72.41 \%$

NITIN VIIJAY (NV Sir)
Founder \& CEO
Motílon

