JEE MAIN 2023 Paper with Solution

CHEMISTRY | 29th Jan 2023 _ Shift-1

Motion[®]

PRE-ENGINEERING
JEE (Main+Advanced)

PRE-MEDICAL NEET PRE-FOUNDATION
Olympiads/Boards

MYBIZKID Learn to Lead

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.) Toll Free: 18002121799 | www.motion.ac.in | Mail: info@motion.ac.in

MOTION EARNING APP

Scan Code for Demo Class

Umeed Rank Ki Ho Ya Selection Ki, JEET NISCHIT HAI!

Most Promising RANKS
Produced by MOTION Faculties

Nation's Best SELECTION Percentage (%) Ratio

NEET / AIIMS

AIR-1 to 10 25 Times

AIR-11 to 50 83 Times

AIR-51 to 100 81 Times

JEE MAIN+ADVANCED

AIR-1 to 10 8 Times

AIR-11 to 50 32 Times

AIR-51 to 100 36 Times

(2022) **4837/5356** = **90.31%**(2021)

3276/3411 = **93.12%**

Student Qualified in NEET

Student Qualified in JEE ADVANCED

(2022)

1756/4818 = 36.45% (2021)

1256/2994 = 41.95%

Student Qualified in JEE MAIN

(2022)

4818/6653 = **72.41%** (2021)

2994/4087 = 73.25%

NITIN VIIJAY (NV Sir)

Founder & CEO

SECTION - A

"A" obtained by Ostwald's method involving air oxidation of NH₃, upon further air oxidation produces 31. "B". "B" on hydration forms an oxoacid of Nitrogen along with evolution of "A". The oxoacid also produces "A" and gives positive brown ring test.

Identify A and B, respectively.

- $(1) N_2 O_3, NO_2$
- $(2) NO_2, N_2O_4$
- $(3) NO_2, N_2O_5$ $(4) NO_1NO_2$

Sol.

$$4 \text{ NH}_3 + 5\text{O}_2 \xrightarrow{\Delta} 4\text{NO} + 6\text{H}_2\text{O}$$

(A)

$$2NO+O_2 \rightarrow 2NO_2$$

(B)

- Correct statement about smog is: 32.
 - (1) Classical smog also has high concentration of oxidizing agents
 - (2) Both NO₂ and SO₂ are present in classical smog
 - (3) NO₂ is present in classical smog
 - (4) Photochemical smog has high concentration of oxidizing agents

Sol.

Photochemical smog is oxidizing smog. Its high concentration of oxidizing agent like ozone and HNO₃

The standard electrode potential (M^{3+}/M^{2+}) for V, Cr, Mn& Co are -0.26 V, -0.41 V, +1.57 V and 33. +1.97 V, respectively. The metal ions which can liberate H₂ from a dilute acid are

- (1) Mn^{2+} and Co^{2+}
- (2) Cr^{2+} and Co^{2+}
- (3) V^{2+} and Cr^{2+} (4) V^{2+} and Mn^{2+}

Sol.

V⁺² and Cr⁺²

The metal ion for which have less value of reduction potential can release H₂ on reaction with dilute acid.

The shortest wavelength of hydrogen atom in Lyman series is λ . The longest wavelength in Balmer 34. series of He⁺is

- $(2)\frac{9\lambda}{5}$ $(3)\frac{5}{9\lambda}$
- $(4)\frac{5\lambda}{9}$

Sol.

For lymen seriese
$$\rightarrow \frac{1}{\lambda_{\min}} = R \times 1 \left(\frac{1}{1^2} - \frac{1}{\infty^2} \right)$$

For balmer seriese $\rightarrow \frac{1}{\lambda} = R \times 4 \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$

$$\frac{\frac{1}{\lambda_{\min}}}{\frac{1}{\lambda_{\max}}} = \frac{\lambda_{\max}}{\lambda_{\min}} = \frac{\lambda_{\max}}{\lambda} = \frac{9R}{5R}$$

$$\lambda_{max} = \frac{9\lambda}{5}$$

The bond dissociation energy is highest for **35**·

- (1) F_2
- (2) Br₂
- $(3) I_2$
- (4) Cl₂

JEE MAIN 2023

Sol.

Order of B.D.E in halogen is

(E) Cl-Cl > Br-Br > F-F > I-I

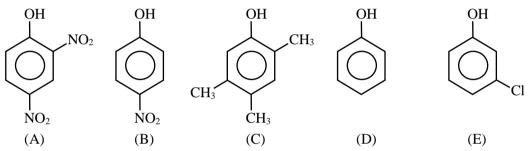
36. The increasing order of pK_a for the following phenols is

(A) 2, 4-Dinitrophenol

- (B) 4-Nitrophenol
- (C) 2, 4,5 Trimethylphenol
- (D) Phenol

(E) 3-Chlorophenol

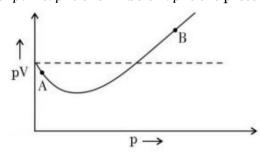
Choose the correct answer from the option given below:


(1) (A), (B), (E), (D), (C)

(2) (C), (D), (E), (B), (A)

(3)(A),(E),(B),(D),(C)

(4)(C), (E), (D), (B), (A)


Sol.

acedic strength ∝ K_a

$$\propto \frac{1}{PK_a}$$

37. For 1 mol of gas, the plot of pV vs. p is shown below. p is the pressure and V is the volume of the gas

What is the value of compressibility factor at point?

- (1) $1 + \frac{a}{RTV}$
- (2) $1 \frac{a}{RTV}$
- (3) $1 + \frac{b}{v}$
- (4) $1 \frac{b}{v}$

At point $A \rightarrow low$ pressure, volume of gas very high

$$\rightarrow$$
 V-b \approx V

$$\left(p + \frac{a}{V^2}\right) \left(v - \frac{b}{\text{neglect}}\right) = RT$$

$$\left(p + \frac{a}{V^2}\right)v = RT$$

$$PV + \frac{a}{v} = RT$$

$$z + \frac{a}{RTV} = 1$$

$$z = 1 - \frac{a}{RTV}$$

38. Match List I with List II.

List I		List II	
Antimicrobials		Names	
(A)	Narrow Spectrum Antibiotic	(I) Furacin	
(B)	Antiseptic	(II) Sulphur dioxide	
(C)	Disinfectants	(III) Penicillin G	
(D)	Broad spectrum antibiotic	(IV) Chloramphenicol	

Choose the correct answer from the options given below:

$$(1) (A) - II, (B) - I, (C) - IV, (D) - III$$

(2) (A)
$$-I$$
, (B) $-II$, (C) $-IV$, (D) $-III$

$$(3)(A) - II,(B) - I,(C) - IV,(D) - II$$

(4) (A)
$$-III$$
, (B) $-I$, (C) $-II$, (D) $-IV$

Sol.

Narrow Spectrum Antibiotic → Penicillin G (used in pathgens)

Antiseptic → Furacin

Disinfectants → Sulphur dioxide

Broad spectrum antibiotic → Chloramphenicol

- **39.** During the borax bead test with CuSO₄, a blue green colour of the bead was observed in oxidising flame due to the formation of
 - (1) CuO
- (2) $Cu(BO_2)_2$
- (3) $Cu_3 B_2$
- (4) Cu

Sol. 2

Blue green colour is due to formation of Cu(BO₂)₂

 $CuSO_4 \xrightarrow{\Delta} CuO + SO_3$

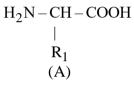
 $CuO+B2O_3 \rightarrow Cu(BO_2)_2$

JEE MAIN 2023

- **40.** Which of the following salt solution would coagulate the colloid solution formed when FeCl₃ is added to NaOH solution, at the fastest rate?
 - (1) 10 mL of 0.1 mol dm⁻³ Na₂SO₄
- (2) 10 mL of 0.2 mol dm⁻³ AlCl₃
- (3) 10 mL of 0.1 mol $dm^{-3} Ca_3(PO_4)_2$
- (4) 10 mL of 0.15 mol dm⁻³ CaCl₂

Sol. 2

 $FeCl_3+NaOH \rightarrow Fe(OH)_3/OH^-$


Negative colloidal particle

Positive ion required for coagulation of sol.

- **41.** Number of cyclic tripeptides formed with 2 amino acids *A* and *B* is:
 - (1) 5
- (2)2
- (3)4
- (4)3

Sol. 3

To amine acid

 $H_2N-CH-COOH$ $| R_2$ (B)

Tripeptide are formed \rightarrow

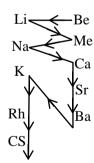
- **42.** The correct order of hydration enthalpies is
 - (A) K⁺
- (B) Rb⁺
- $(C) Mg^{2+}$
- $(D) Cs^+$

(E) Ca^{2+}

Choose the correct answer from the options given below:

(1) E > C > A > B > D

(2)C > A > E > B > D


(2) C > E > A > D > B

(4) C > E > A > B > D

Sol. 4

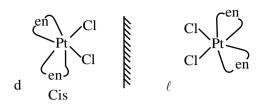
Order of hydration enthalpy is size order

Smallest

larger

 $Mg^{2+}>Ca^{2+}>K^{+}>Rb^{+}>CS^{+}$

43. Chiral complex from the following is:


Here en = ethylene diamine

(1) cis $-[PtCl_2(en)_2]^{2+}$

(2) trans – $[PtCl_2(en)_2]^{2+}$

(3) $cis - [PtCl_2(NH_3)_2]$

(4) trans $- [Co(NH_3)_4Cl_2]^+$

- Identify the correct order for the given property for following compounds. 44.
 - (A) Boiling Point: CI < CI < CI
 - (B) Density: $\bigcirc_{\text{Br}} < \bigcirc_{\text{Cl}} < \bigcirc_{\text{I}}$
 - (C) Boiling Point: $\nearrow_{Br} < \nearrow_{Br}^{Br} < \nearrow_{Br}^{Br}$

$$\operatorname{Br}^{\mathrm{I}} < \operatorname{Br} < \operatorname{Br}^{\mathrm{Cl}}$$

(D) Density:

(E) Boiling Point:

Choose the correct answer from the option given below:

(1) (B), (C) and (D) only

(2) (A), (C) and (D) only

(3) (A), (B) and (E) only

(4) (A), (C) and (E) only

- Sol. 4
 - (i) B.P. ∞ Molecular mass
 - (ii) B.P. ∝ polarity↑
 - (iii) B.P. $\propto \frac{1}{\text{No.of Branches}}$
- The magnetic behavior of Li₂O, Na₂O₂ and KO₂, respectively, are 45.
 - (1) Paramagnetic, paramagnetic and diamagnetic
 - (2) diamagnetic, paramagnetic and diamagnetic
 - (3) paramagnetic, diamagnetic and paramagnetic
 - (4) diamagnetic, diamagnetic and paramagnetic
- Sol. 4

Li₂O O--Diamagnetic Na_2O_2 Diamagnetic KO_2 $O_2^$ paramagnetic

The reaction representing the Mond process for metal refining is_ 46.

(1)
$$ZnO + C \xrightarrow{\Delta} Zn + CO$$

(2)
$$Zr + 2I_2 \xrightarrow{\Delta} ZrI_4$$

(3)
$$2 \text{ K}[\text{Au}(\text{CN})_2] + \text{Zn} \xrightarrow{\Delta} \text{K}_2[\text{Zn}(\text{CN})_4] + 2\text{Au}$$

(4) Ni + 4CO
$$\stackrel{\Delta}{\rightarrow}$$
 Ni(CO)₄

Ni+4CO
$$\xrightarrow{50^{\circ}\text{C}}$$
 Ni(CO)₄
Impure
$$vap.$$

$$250^{\circ}\text{C}$$
Ni + 4CO
pure

- **47.** Which of the given compounds can enhance the efficiency of hydrogen storage tank?
 - (1) Di-isobutylaluminium hydride

(2) NaNi₅

 $(3) Li/P_4$

(4) SiH₄

Sol. 2

Ni can adsorb 800 times more hydrogen then its own volume

48. Match List I with List II.

List I		List II
Reaction		Reagents
(A)	Hoffmann Degradation	(I) Conc.KOH, Δ
(B)	Clemenson reduction	(II) CHCl ₃ , NaOH/H3O [⊕]
(C)	Cannizaro reaction	(III) Br ₂ , NaOH
(D)	Reimer-Tiemann Reaction	(IV) Zn – Hg/HCl

Choose the correct answer from the options given below:

$$(1)$$
 $(A) - III, (B) - IV, (C) - I, (D) - II$

$$(2)$$
 (A) - II, (B) -I, (C) - III, (D) - IV

$$(3) (A) - III, (B) - IV, (C) - II, (D) - I$$

$$(4)(A) - II,(B) - IV,(C) - I,(D) - III$$

Sol.

Hoffmann degradation \rightarrow Br₂, NaOH

Clemenson reduction \rightarrow Zn-Hg/HCl

Cannizaro reaction \rightarrow Conc. KOH, Δ

Reimer-Tiemann reaction → CuCl₃, NaOH/H₃O[⊕]

49. The major product 'P' for the following sequence of reactions is:

$$\begin{array}{ccc} O & O \\ Ph & & & \\ NH_2 & & \\ \hline & 2) \text{ LiAlH}_4 \\ \hline & 3) \text{ H}_3O^+ \end{array} \qquad \begin{array}{c} \text{`P'} \\ \text{major product} \end{array}$$

$$_{(2)}$$
 Ph $\stackrel{\text{OH}}{\longleftarrow}$ NH₂

JEE MAIN 2023

Sol.

$$\begin{array}{c} O & O \\ Ph & \\ NH_2 & \\ \hline \\ NH_2 & \\ \hline \\ HCl & \\ HCl & \\ Ph & \\ NH_2 & \\ \hline \\ NH_3 & \\ \hline \\ NH_2 & \\ \hline \\ NH_3 & \\ \hline \\ NH_2 & \\ \hline \\ NH_3 & \\ \hline \\ NH_2 & \\ \hline \\ NH_3 & \\ \hline \\ NH_3 & \\ \hline \\ NH_4 & \\ \hline \\ NH_5 & \\ \hline \\ NH_6 & \\ \hline \\ NH_6 & \\ \hline \\ NH_7 & \\ \hline \\ NH_8 & \\ \hline \\ NH_9 & \\ \hline \\ NH_{10} & \\ \hline \\ NH_{10}$$

Compound that will give positive Lassaigne's test for both nitrogen and halogen is: 50.

(1) NH₂OH.HCl

(2) CH₃NH₂.HCl

(3) NH₄Cl

(4) N₂H₄.HCl

Sol.

Lassaigne test for both N and X is given by the compound which have C, N as well X atom in compound.

Millimoles of calcium hydroxide required to produce 100 mL of the aqueous solution of pH 12 is $x \times$ **51.** 10^{-1} . The value of x is (Nearest integer).

Assume complete dissociation.

Sol.

Molarity of Ca(OH)₂=
$$\frac{N}{2} = \frac{10^{-2}}{2} = 0.005 \text{ N}$$

$$0.005 = \frac{\text{mili moles}}{100}$$

$$=\frac{5}{1000}=\frac{\text{mili moles}}{100}$$

 $= 5 \times 10^{-1}$ milimoles

Water decomposes at 2300 K **52.**

$$H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g)$$

The percent of water decomposing at 2300 K and 1 bar is ______(Nearest integer). Equilibrium constant for the reaction is 2×10^{-3} at 2300 K.

Sol.

$$H_2O(g) \rightarrow H_2(g) + 1/2O_2$$

$$1-\infty$$
 \propto $\infty/2$

$$k_p = \frac{\infty (\infty/2)^{1/2}}{1-\infty} = 2 \times 10^{-3}$$

$$2 \times 10^{-3} = \frac{\infty^{3/2}}{\sqrt{2} (1 - \infty)}$$

$$2^{3/2} \times (10^{-2})^{3/2} = \infty^{3/2}$$

$$\propto = 2 \times 10^{-2}$$

53. The sum of bridging carbonyls in $W(CO)_6$ and $Mn_2(CO)_{10}$ is_____

Sol. (

 $W(CO)_6 \rightarrow 0$ Bridge CO

 $Mn_2(CO)_{10} \rightarrow 0$

Solid Lead nitrate is dissolved in 1 litre of water. The solution was found to boil at 100.15° C. When 0.2 mol of NaCl is added to the resulting solution, it was observed that the solution froze at -0.8° C. The solubility product of PbCl₂ formed is $\times 10^{-6}$ at 298 K. (Nearest integer) (Given: $K_b=0.5$ K kgmol⁻¹ and $K_f=1.8$ K kg mol⁻¹. Assume molality to be equal to molarity in all cases.)

Sol. 13

Let a mole Pb (NO₃)₂ be added

$$Pb(NO_3)_2 \rightarrow Pb^{2+} + 2NO_3^-$$

a

$$\Delta T_b = 0.15 = 0.5[3a] \Rightarrow a = 0.1$$

$$Pb_{(aq)}^{2+} + 2Cl_{(aq)}^{-} \rightarrow PbCl_{2}(s)$$

t = 0

$$t = \infty$$

$$(0.1 - x)$$

$$(0.2 - 2x)$$

In final solution

$$\Delta T_{\rm f} = 0.8 = 1.8 \left[\frac{0.3 + 3x + 0.2 + 0.2}{1} \right]$$

$$\Rightarrow x = \frac{2.3}{27}$$

$$\Rightarrow K_{sp} = \left(0.1 - \frac{2.3}{27}\right) \left(0.2 - \frac{4.6}{27}\right)^2 = 13 \times 10^{-6}$$

JEE MAIN 2023

17mg of a hydrocarbon (M.F. $C_{10}H_{16}$) takes up 8.40 mL of the H_2 gas measured at 0°C and 760 mm of Hg. Ozonolysis of the same hydrocarbon yields

The number of double bond/s present in the hydrocarbon is_____

Sol. 3

Moles of hydrocarbon =
$$\frac{17 \times 10^{-3}}{136} = 1.25 \times 10^{-4}$$

$$nH_2 = 1 \times \frac{8.4}{1000} = n \times 0.0821 \times 273$$

$$\Rightarrow$$
 n = 3.75×10⁻⁴

Hydrogen molecule used for 1 molecule of hydrogen is 3

$$=\frac{3.75\times10^{-4}}{1.25\times10^{-4}}=3$$

56. Consider the following reaction approaching equilibrium at 27°C and 1 atm pressure

$$A + B \underset{k_r=10^2}{\overset{k_f=10^3}{\rightleftharpoons}} C + D$$

The standard Gibb's energy change ($\Delta_r G^{\theta}$) at 27°C is (–)____KJ mol^-1

(Nearest integer).

(Given:
$$R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1} \text{ and } \ln 10 = 2.3$$
)

Sol. 6

$$K_{eq} = \frac{K_f}{K_b} = \frac{10^3}{10^2} = 10$$

$$\Delta G^o = -RT \ ln \ K_{eq}$$

$$= -8.3 \times 300 \ln 10$$

$$=-8.3\times300\times2.3$$

$$=-5.72\times10^{+3} \text{ J}$$

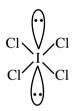
$$= 5.72 \text{ KJ}$$

57. The number of molecules or ions from the following, which do not have odd number of electrons are_____

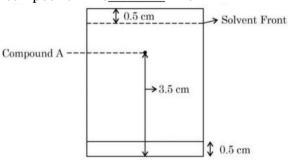
- (A) NO₂
- (B) ICl_4^-
- (C) BrF₃
- (D) ClO_2

- $(E) NO_{2}^{+}$
- (F) NO

odd e



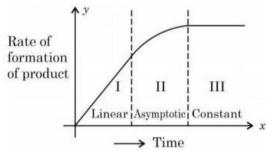
ICl₄⁻, BrF₃ and NO₂⁺ do not have odd number of electron.


$$N \frac{\frac{1/2\pi}{\cdots \sigma}}{\frac{\cdots \sigma}{\pi}} O$$

Odd e⁻ absent

$$\begin{array}{c|c}
F \\
Br - F \\
F
\end{array}$$

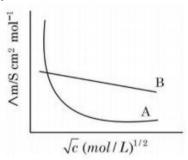
Following chromatogram was developed by adsorption of compound 'A' on a 6 cm TLC glass plate. Retardation factor of the compound 'A' is $\times 10^{-1}$


Sol.

 $R_f = \frac{Distance moved by the substance from base line}{Distance moved by the solvent from base line}$

$$= \frac{3.0 \text{ cm}}{5.0 \text{ cm}} = 0.6 \text{ or } 6 \times 10^{-1}$$

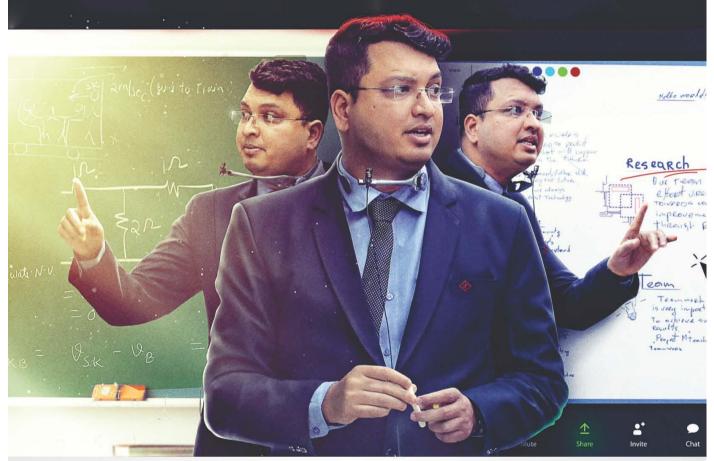
JEE MAIN 2023


59. For certain chemical reaction $X \to Y$, the rate of formation of product is plotted against the time as shown in the figure. The number of correct statement/s from the following is_____

- (A) Over all order of this reaction is one
- (B) Order of this reaction can't be determined
- (C) In region I and III, the reaction is of first and zero order respectively
- (D) In region-II, the reaction is of first order
- (E) In region-II, the order of reaction is in the range of 0.1 to 0.9.
- Sol. 2

Only option (B) is correctr as order cannot be determined.

60. Following figure shows dependence of molar conductance of two electrolytes on concentration. Λ m is the limiting molar conductivity.



The number of incorrect statement(s) from the following is

- (A) Λ m for electrolyte A is obtained by extrapolation
- (B) For electrolyte B, Λm vs \sqrt{c} graph is a straight line with intercept equal to Λm
- (C) At infinite dilution, the value of degree of dissociation approaches zero for electrolyte B.
- (D) Λ m for any electrolyte A or B can be calculated using λ° for individual ions
- Sol. 2

Statement (A) and Statement (C) are incorrect.

Perfect mix of CLASSROOM Program aided with technology for sure SUCCESS.

Continuing the legacy for the last 16 years

MOTION LEARNING APP

Get 7 days FREE trial & experience Kota Learning

मोशन है, तो भरोसा है।

#RankBhiSelectionBhi

ADMISSION ANNOUNCEMENT

Session 2023-24 (English & हिन्दी Medium)

Target: JEE/NEET 2025 Hurture & प्रदास Batch

Class 10th to 11th Moving

Target: JEE/NEET 2024

Dropper & STATES Batch
Class 12th to 13th Moving

Target: JEE/NEET 2024
Enthuse & WATH Batch
Class 11th to 12th Moving

Target: PRE FOUNDATION
SIP, Evening & Tapasya Batch
Class 6th to 10th Students

