JEE MAIN 2023 Paper with Solution

CHEMISTRY | 31th Jan 2023 Shift-1

Motion[®]

PRE-ENGINEERING
JEE (Main+Advanced)

PRE-MEDICAL NEET PRE-FOUNDATION
Olympiads/Boards

MYBIZKID
Learn to Lead

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.) Toll Free: 18002121799 | www.motion.ac.in | Mail: info@motion.ac.in

MOTION EARNING APP

Scan Code for Demo Class

Umeed Rank Ki Ho Ya Selection Ki, JEET NISCHIT HA!!

Most Promising RANKS
Produced by MOTION Faculties

Nation's Best SELECTION Percentage (%) Ratio

NEET / AIIMS

AIR-1 to 10 25 Times

AIR-11 to 50 83 Times

AIR-51 to 100 81 Times

JEE MAIN+ADVANCED

AIR-1 to 10 8 Times

AIR-11 to 50 32 Times

AIR-51 to 100 36 Times

NITIN VIIJAY (NV Sir)

Founder & CEO

Student Qualified in NEET

(2022)

4837/5356 = **90.31%** (2021)

3276/3411 = **93.12%**

Student Qualified in JEE ADVANCED

(2022)

1756/4818 = **36.45%**

(2021)

1256/2994 = **41.95%**

Student Qualified in JEE MAIN

(2022)

4818/6653 = **72.41%**

(2021)

2994/4087 = **73.25%**

SECTION - A

31. Match items of column I and II

reems or column rana m	
Column I (Mixture of compounds)	Column II (Separation Technique)
A. H ₂ O/CH ₂ Cl ₂	i. Crystallization
B. OH OH OH NO ₂	ii. Differential solvent extraction
C. Kerosene /Naphthalene	iii. Column chromatography
D. C ₆ H ₁₂ O ₆ /NaCl	iv. Fractional Distillation

Correct match is

Sol.

A-(ii),

Density of CH₂Cl₂ > Density of H2O

(Can separated by differential solvent extraction

B-(iii),

Having intermolecular H-Bond so can be separated from

through column

chromatography

C-(iv),

Due to difference in B.P. of kerosene and Naphthalene, it can be separated by fractional distillation D-(i)

NaČĺ → ionic compound

 $C_6H_{12}O_6 \rightarrow Non ionic compound$

so NaCl can by crystallized.

32.

Consider the above reaction and identify the product B. Options

(1)
$$CH_2$$
 CH_2 $CH_$

Motion

JEE MAIN 2023

Sol. 1

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{NH}_2 \\
\hline
 & \text{NH}_2 \\
\hline
 & \text{CH}_3 \text{CO}_2) \\
\hline
 & \text{C}_2 \text{H}_5 \text{O}_4
\end{array}$$

33. An organic compound 'A' with emperical formula C_6H_6O gives sooty flame on burning. Its reaction with bromine solution in low polarity solvent results in high yield of B.B is

$$(1) \begin{array}{c} Br \\ OH \\ OH \\ 3. \end{array} \qquad (2) \begin{array}{c} Br \\ OH \\ CH_2CH_2Br \\ (4) \end{array}$$

Sol. 3

Phenol will give sooty flame while burning (aromatic compound)

$$\begin{array}{c|c}
OH & OH \\
\hline
Br_2 & \\
\hline
In law polarity solvent \\
(CHCl_3) & Br \\
\hline
(Major)
\end{array}$$

34. When Cu^{2+} ion is treated with KI, a white precipitate, X appears in solution. The solution is titrated with sodium thiosulphate, the compound Y is formed. X and Y respectively are

(1)
$$X = CuI_2$$
 $Y = Na_2 S_4O_6$
(2) $X = CuI_2$ $Y = Na_2 S_2O_3$
(3) $X = Cu_2I_2$ $Y = Na_2 S_4O_5$
(4) $X = Cu_2I_2$ $Y = Na_2 S_4O_6$

Sol. 4

$$\begin{array}{cccc} CuSO_4 + KI & \longrightarrow & Cu_2I_2 + I_2 & + & K_2SO_4 \\ & & & While & Violet \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & &$$

'M' Electrolysis & liquation is method of purification where as hydraulic washing, leading, froth flotation are method of can conbration.

JEE MAIN 2023

- **35.** Choose the correct set of reagents for the following conversion. $trans(Ph-CH=CH-CH_3) \rightarrow cis(Ph-CH=CH-CH_3)$
 - (1) Br₂, aq · KOH, NaNH₂, Na(LiqNH₃)
 - (2) Br_2 , alc · KOH, NaNH₂, H_2 Lindlar Catalyst
 - (3) Br_2 , aq · KOH, NaNH₂, H_2 Lindlar Catalyst
 - (4) Br_2 , alc · KOH, $NaNH_2$, $Na(LiqNH_3)$
- Sol. 2

$$\begin{array}{c|c} H & Br & CH_3 \\ H & H & H & CH_3 \\ \hline \\ H & CH_4 & CH_5 & CH_3 \\ \hline \\ H & CH_5 & CH_6 & (ii) AlC. KOH \\ \hline \\ H & CH_6 & CH_6 & (iii) NaNH_2 \\ \hline \\ H & CH_7 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ H & CH_8 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_8 & CH_8 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_8 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_8 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_8 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_8 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_8 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_9 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_9 & CH_8 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_9 & CH_8 & (iii) NaNH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & CH_9 & (iii) NANH_2 \\ \hline \\ CH_9 & CH_9 & CH_9 & CH_9 & CH_9 \\ \hline \\ CH_9 & CH_9 & CH_9 & CH_9 & CH_9 \\ \hline \\ CH_9 & CH_9 & CH_9 & CH_9$$

36. Consider the following reaction

Propanal + Methanal
$$\xrightarrow{\text{(i) dil.NaOH}}$$
 Product B
 $\xrightarrow{\text{(ii) } \Delta}$ $\xrightarrow{\text{(iii) NaCN}}$ $\xrightarrow{\text{(C}_5H_8O_3)}$
 $\xrightarrow{\text{(iv) H}_3O^+}$

The correct statement for product B is. It is

- (1) optically active alcohol and is neutral
- (2) racemic mixture and gives a gas with saturated NaHCO₃ solution
- (3) optically active and adds one mole of bromine
- (4) racemic mixture and is neutral
- Sol. 2

$$CH_{3}-CH-CHO$$

$$H-C-H \xrightarrow{dil. NaOH} CH_{3}-CH-CHO \xrightarrow{\Delta} CH_{3}-CH$$

$$CH_{2}-H \xrightarrow{CN-CH_{2}} CH_{2}$$

$$CH_{3}-CH-CHO \xrightarrow{\Delta} CH_{3}-CH$$

$$CH_{3}-CH-CHO \xrightarrow{A} CH_{3}-CH$$

$$CH_{3}-CH-CHO \xrightarrow{A} CH_{3}-CH$$

$$CH_{2}-CN \xrightarrow{CH_{2}-CN} CH_{2}-CN$$

$$CH_{2}-CN \xrightarrow{CH_{2}-CN} CH_{2}-CN$$

$$CH_{2}-CN \xrightarrow{C} CH_{2}-CN$$

$$CH_{2}-CN \xrightarrow{C} CH_{2}-CN$$

$$CH_{2}-CN \xrightarrow{C} CH_{2}-CN$$

Carboxylic acid will give CO2 gas with NaHCO3 solutions

JEE MAIN 2023

37. The methods NOT involved in concentration of ore are

A. Liquation

B. Leaching

C. Electrolysis

D. Hydraulic washing

E. Froth floatation

Choose the correct answer from the options given below:

- (1) C, D and E only (2) B, D and C only (3) A and C only
- (4) B, D and E only

Sol.

Methods involved in concentration of one are

- (i) Hydraulic Washing
- (ii) Froth Flotation
- (iii) Magnetic Separation
- (iv) Leaching
- 38. A protein 'X' with molecular weight of 70,000u, on hydrolysis gives amino acids. One of these amino acid is

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2}\text{-CH}_{2}\text{-CH}_{2}\text{-CH}_{2}\text{COOH} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{CH}_{5}$$

Sol.

From protein, only ∞ -Amino acid is possible so answer is (4).

- $Nd^{2+} =$ 39. $(1) 4f^3$
 - (2) $4f^46 s^2$ (3) $4f^4$
- (4) $4f^26 s^2$

Sol. 3

 $Na = 4f^4 5d^0 6s^2$

 $Na^{+2} = 4f^4 5d^0 6s^0$

40. Match List I with List II

List I	List II
A. XeF ₄	I. See-saw
B. SF ₄	II. Square planar
C. NH ₄ ⁺	III. Bent T-shaped
D. BrF ₃	IV. Tetrahedral

Choose the correct answer from the options given below:

(1) A-IV, B-III, C-II, D-I

(2) A-IV, B-I, C-II, D-III

(3) A-II, B-I, C-III, D-IV

(4) A-II, B-I, C-IV, D-III

Sol.

XeF ₄	Sq. planar
SF ₄	see saw
NH_4^+	Tetrahedral
BrF ₃	Bent 'T' shaped.

Identify X,Y and Z in the following reaction. (Equation not balanced) 41.

$$ClO + NO_2 \rightarrow \underline{X} \overset{H_2O}{\longrightarrow} \underline{Y} + \underline{Z}$$
 (1) $X = ClONO_2, Y = HOCl, Z = HNO_3$

(1)
$$X = ClONO_2$$
, $Y = HOCl$, $Z = HNO_2$

(2)
$$X = ClONO_2$$
, $Y = HOCl$, $Z = NO_2$

(3)
$$X = CINO_2$$
, $Y = HCl$, $Z = HNO_3$

(4)
$$X = ClNO_3, Y = Cl_2, Z = NO_2$$

Sol.

$$\stackrel{\circ}{\text{Cl O}} + \text{NO}_2 \longrightarrow \stackrel{\circ}{\text{ClO.NO}_2} \stackrel{\text{H}_2\text{O}}{\longrightarrow} \stackrel{\text{HOCl}}{\text{HNO}_3}$$

42. The correct increasing order of the ionic radii is

(1)
$$S^{2-} < Cl^- < Ca^{2+} < K^+$$

(2)
$$K^+ < S^{2-} < Ca^{2+} < Cl^-$$

(3)
$$Ca^{2+} < K^+ < Cl^- < S^{2-}$$

(4)
$$Cl^- < Ca^{2+} < K^+ < S^{2-}$$

Sol.

For isoelectronic species size $\propto \frac{1}{-}$

$$Ca^{+2} < K^+ < Cl^- < S^{-2}$$
: size Z: 20 19 17 18

43. Cobalt chloride when dissolved in water forms pink colored complex \underline{X} which has octahedral geometry. This solution on treating with conc HCl forms deep blue complex, Y which has a Z geometry. X, Y and Z, respectively, are

(1)
$$X = [Co(H_2O)_6]^{2+}, Y = [CoCl_4]^{2-}, Z = Tetrahedral$$

(2)
$$X = [Co(H_2O)_6]^{2+}, Y = [CoCl_6]^{3-}, Z = Octahedral$$

(3)
$$X = [Co(H_2O)_4Cl_2]^+, Y = [CoCl_4]^{2-}, Z = Tetrahedral$$

(4)
$$X = [Co(H_2O)_6]^{3+}, Y = [CoCl_6]^{3-}, Z = Octahedral$$

Sol. 1

$$\begin{array}{c} \text{CoCl}_2 + \text{H}_2\text{O} \longrightarrow & \left[\text{Co(H}_2\text{O})_6\right]^{2+} \xrightarrow{\text{conc. HCl}} & \left[\text{CoCl}_4\right]^{2-} \\ \text{Pink} & \text{Blue Tetrahderal} \end{array}$$

44. H₂O₂ acts as a reducing agent in

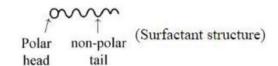
(1)
$$2NaOCl + H_2O_2 \rightarrow 2NaCl + H_2O + O_2$$

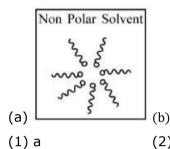
(2)
$$Na_2 S + 4H_2O_2 \rightarrow Na_2SO_4 + 4H_2O$$

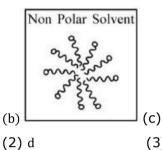
(3)
$$2Fe^{2+} + 2H^+ + H_2O_2 \rightarrow 2Fe^{3+} + 2H_2O$$

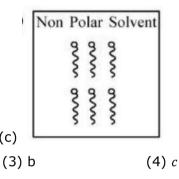
(4)
$$Mn^{2+} + 2H_2O_2 \rightarrow MnO_2 + 2H_2O$$

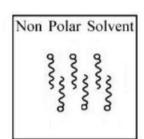
Sol.

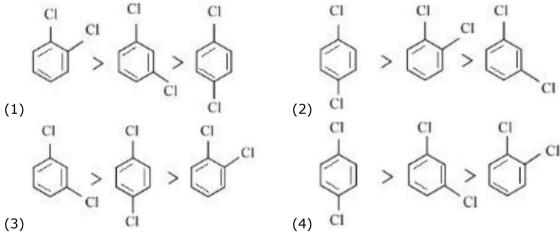

$$2\text{NaO} \stackrel{+1}{\text{Cl}} + \text{H}_2\text{O}_2 \longrightarrow 2\text{Na} \stackrel{-1}{\text{Cl}} + \text{H}_2\text{O} + \text{O}_2$$


H₂O₂ acts as reducing agent.


Motion®


JEE MAIN 2023


45. Adding surfactants in non polar solvent, the micelles structure will look like



(d)

- **Sol.** 1 Non polar end will be towards non polar solvent
- **46.** The correct order of melting points of dichlorobenzenes is

Sol. 2

- **47.** The correct order of basicity of oxides of vanadium is
 - $(1) V_2 O_5 > V_2 O_4 > V_2 O_3$

(2) $V_2O_4 > V_2O_3 > V_2O_5$

(3) $V_2O_3 > V_2O_5 > V_2O_4$

(4) $V_2O_3 > V_2O_4 > V_2O_5$

Sol. 4

Leaser is charge on canter atom more will be the basicity.

- 48. Which of the following artificial sweeteners has the highest sweetness value in comparison to cane sugar?
 - (1) Sucralose
- (2) Aspartame
- (3) Alitame
- (4) Saccharin

3 Sol.

Alitame has 2000 has times more sweetner as compare to cane sugar.

- Which one of the following statements is correct for electrolysis of brine solution? 49.
 - (1) Cl₂ is formed at cathode
- (2) 0_2 is formed at cathode
- (3) H₂ is formed at anode

(4) OH-is formed at cathode

Sol.

Brine solⁿ gives H_2/OH^- at cathode & Cl_2 at anode.

50. Which transition in the hydrogen spectrum would have the same wavelength as the Balmer type transition from n = 4 to n = 2 of He^+ spectrum

(1)
$$n = 2$$
 to $n = 1$

(2)
$$n = 1$$
 to $n = 2$

(3)
$$n = 3$$
 to $n = 4$ (4) $n = 1$ to $n = 3$

(4)
$$n = 1$$
 to $n = 3$

$$\lambda_{\mathrm{H}} = \lambda_{\mathrm{He}^{+}}$$

$$R_{H} \times (1)^{2} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right) = R_{H} \times (2)^{2} \left(\frac{1}{(2)^{2}} - \frac{1}{(4)^{2}} \right)$$

$$\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = \left(\frac{4}{4}\right) - \left(\frac{4}{16}\right)$$

$$\frac{1}{n_1^2} - \frac{1}{n_2^2} = \frac{1}{1} - \frac{1}{4}$$

$$n_1 = 1 : n_2 = 2$$
 for H-atom

SECTION B

- **51.** The oxidation state of phosphorus in hypophosphoric acid is +
- Hypophosphoric acid is $H_4P_2O_6$ oxidation state of P is +4. Sol.
- The enthalpy change for the conversion of $\frac{1}{2}Cl_2(g)$ to $Cl^-(aq)$ is (-) $kJmol^{-1}$ (Nearest integer) **52.**

Given :
$$\Delta_{\text{dis}} \ H^{\ominus}_{\text{Cl}_{2(g)}} = 240 \ \text{kJ mol}^{-1}, \Delta_{\text{eg}} H^{\Theta}_{\text{Cl}_{(g)}} = -350 \ \text{kJ mol}^{-1}, \Delta_{\text{hyd}} \ H^{\Theta}_{\text{Cl}_{(g)}} = -380 \ \text{kJ mol}^{-1}$$

Sol. 610

JEE MAIN 2023

$$\begin{array}{c|c} ^{1\!\!/_{2}}\operatorname{Cl}_{2} & \longrightarrow & \operatorname{Cl}^{-}\operatorname{aq}. \\ \\ ^{1\!\!/_{2}}\operatorname{BE} & & \bigwedge \\ & \Delta H_{\operatorname{Hyd.}}\operatorname{Of}\operatorname{Cl}_{(g)} \\ & \operatorname{Cl}_{(g)} & \longrightarrow & \operatorname{Cl}_{(g)} \\ & \Delta H_{\operatorname{eg.}}\operatorname{Of}\operatorname{Cl}_{(g)} \end{array}$$

$$\Delta H_{\gamma}^{\circ} = \frac{1}{2} \times BE + \Delta H_{eg} + \Delta H_{Hyd}$$

$$= \frac{1}{2} \times 240 + (-350) + (-380)$$

$$\Rightarrow 120 - 350 - 380$$

$$\Rightarrow -610$$

53. The logarithm of equilibrium constant for the reaction $Pd^{2+} + 4Cl^- \rightleftharpoons PdCl_4^{2-}$ is (Nearest integer)

Given:
$$\frac{2.303RT}{F} = 0.06 \text{ V}$$

 $Pd_{(aq)}^{2+} + 2e^- \rightleftharpoons Pd(s) E^{\ominus} = 0.83 \text{ V}$
 $PdCl_4^{2-}(aq) + 2e^- \rightleftharpoons Pd(s) + 4Cl^-(aq) E^{\theta} = 0.65 \text{ V}$

$$\begin{split} \Delta G^{\circ} &= -RT\ell nK \\ -nFE^{\circ}_{cell} &= -RT \times 2.303 \text{ (log}_{10}\text{K)} \qquad(1) \\ \text{Net reaction} &\rightarrow Pd^{2+} \text{ (aq.)} + 4Cl^{-} \text{ (aq.)} &\rightleftharpoons PdCl_{4}^{2-} \text{ (aq.)} \\ E^{\circ}_{cell} &= E^{\circ}_{cathod} - E^{\circ}_{anode} \\ E^{\circ}_{cell} &= 0.83 - 0.65 \\ \text{From equation (1)} \\ \text{Also n} &= 2 \\ \text{logK} &= 6 \end{split}$$

On complete combustion, 0.492 g of an organic compound gave 0.792 g of CO_2 . The % of carbon in the organic compound is (Nearest integer)

Sol. 44

44 gm of CO₂ contains 12 g carbon.

0.792 gm of CO₂ contains
$$\frac{0.792 \times 12}{44}$$
 g of carbon

% of carbon =
$$\frac{0.216}{0.492} \times 100$$

= 43.9% = 44%

Zinc reacts with hydrochloric acid to give hydrogen and zinc chloride. The volume of hydrogen gas produced at STP from the reaction of 11.5 g of zinc with excess HCl is L (Nearest integer) (Given: Molar mass of Zn is 65.4 g mol^{-1} and Molar volume of H_2 at STP = 22.7 L)

$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$$

No. of moles of $Zn = \frac{11.5}{65.3} = No.$ of moles of H_2
No. of H_2 liberated = 0.176 × 22.7 Lt.
= 3.99 L = 4 Lt.

JEE MAIN 2023

56.
$$A \to B$$

The rate constants of the above reaction at 200 K and 300 K are $0.03~\rm min^{-1}$ and $0.05~\rm min^{-1}$ respectively. The activation energy for the reaction is J (Nearest integer) (Given : $\ln 10 = 2.3$ R = $8.3~\rm I~K^{-1}~mol^{-1}$

$$log 5 = 0.70$$

$$log 3 = 0.48$$

$$\log 2 = 0.30$$
)

$$\operatorname{In}\left(\frac{\mathbf{K}_{2}}{\mathbf{K}_{1}}\right) = \frac{\operatorname{Ea}}{\operatorname{R}}\left[\frac{1}{\operatorname{T}_{1}} - \frac{1}{\operatorname{T}_{2}}\right]$$

$$\mathsf{Log}\left(\frac{0.05}{0.03}\right) = \frac{\mathsf{Ea}}{2.3 \times 8.3} \left[\frac{1}{200} - \frac{1}{300}\right]$$

$$[0.70 - 0.48] = \frac{\text{Ea}}{2.3 \times 8.3} \left[\frac{300 - 200}{300 \times 200} \right]$$

$$0.22 = \frac{\text{Ea}}{2.3 \times 8.3} \left[\frac{1}{600} \right]$$

$$Ea = 0.22 \times 2.3 \times 8.3 \times 600$$

57. For reaction:
$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$

 $K_p = 2 \times 10^{12}$ at 27°C and 1 atm pressure. The K_c for the same reaction is $\times 10^{13}$. (Nearest integer) (Given R = 0.082 L atm K^{-1} mol $^{-1}$)

$$K_C = 1 \times 10^{13}$$

$$SO_2(g) + \frac{1}{2}O_2 \rightleftharpoons SO_3(g)$$

$$\Delta n = \frac{-1}{2}$$

$$K_P=2\,\times\,10^{12}$$

$$K_P = K_C (RT) \Delta^{ng}$$

$$P = 1 atm$$

$$2 \times 10^{12} = \text{Kc} (0.082 \times 300)^{-1/2}$$

$$T = 27^{\circ}C$$

$$K_C = 1 \times 10^{13}$$

58. The total pressure of a mixture of non-reacting gases
$$X(0.6 \text{ g})$$
 and $Y(0.45 \text{ g})$ in a vessel is 740 mm of Hg. The partial pressure of the gas X is mm of Hg.

(Nearest Integer) (Given : molar mass X = 20 and $Y = 45 \text{ g mol}^{-1}$)

Number of moles of gas
$$X = \frac{0.6}{20} = 0.03$$

Number of moles of gas
$$Y = \frac{0.45}{45} = 0.01$$

Total number of moles = 0.03 + 0.01 = 0.04 mole

Partial pressure of gas X = Mole fraction \times Total pressure

$$= \frac{0.03}{0.04} \times 740 = 555$$

JEE MAIN 2023

59. How many of the transformations given below would result in aromatic amines?

$$(1) \qquad NH_2 + Br_2 + NaOH \longrightarrow$$

$$(2) \qquad NK \qquad CI$$

$$(3) \xrightarrow{NO_2} \xrightarrow{H_2}$$

$$\begin{array}{c}
\text{NH COCH}_3 \\
\downarrow \\
\text{A)}
\end{array}$$

$$\begin{array}{c}
\text{dil } \text{H}_2\text{SO}_4 \\
\hline{\Delta}
\end{array}$$

Sol. 3

$$(1) \begin{array}{|c|c|c|c|c|} \hline & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

(2) In Gabriel phthalimide synthesis chloro-benzene is poor substrok for $\boldsymbol{S_{N_2}}$, Hence reaction will not observed.

(3)
$$H_2$$
 Pd/C

(Aromatic amine)

NHCOCH₃

NH₂
 A

NH₂

(Aromatic amine)

(4)
$$\frac{\text{Dil. H}_2\text{SO}_4}{\Delta}$$
 (Aromatic amine)

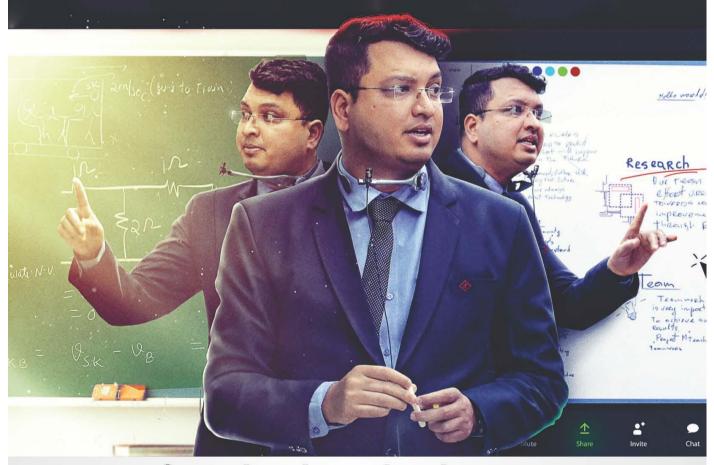
Motion®

JEE MAIN 2023

60. At 27° C, a solution containing 2.5~g of solute in 250.0~mL of solution exerts an osmotic pressure of 400~Pa. The molar mass of the solute is $gmol^{-1}$ (Nearest integer)

(Given :
$$R = 0.083 L_{bar} K^{-1} mol^{-1}$$
)

Sol. 62250


$$\pi = \mathsf{CRT}$$

$$\frac{400\text{Pa}}{10^5} = \frac{\frac{2.5\text{g}}{\text{M}_{\circ}}}{250/1000} \times 0.083 \frac{\text{L} - \text{bar}}{\text{Kmol}} \times 300 \text{ K}$$

$$M_{\odot} = 62250$$

Motion®

Perfect mix of CLASSROOM Program aided with technology for sure SUCCESS.

Continuing the legacy for the last 16 years

MOTION LEARNING APP

Get 7 days FREE trial & experience Kota Learning

मोशन है, तो भरोसा है।

#RankBhiSelectionBhi

ADMISSION ANNOUNCEMENT

Session 2023-24 (English & हिन्दी Medium)

Target: JEE/NEET 2025 Hurture & प्रयास Batch

Class 10th to 11th Moving

Target: JEE/NEET 2024

Dropper & STATES Batch
Class 12th to 13th Moving

Target: JEE/NEET 2024
Enthuse & WATH Batch
Class 11th to 12th Moving

Target: PRE FOUNDATION
SIP, Evening & Tapasya Batch
Class 6th to 10th Students

