JEE MAIN 2024 sissonz Paper with Solution

CHEMISRY | $06^{\text {th }}$ April 2024 _ Shift-2

M0T䍝0N

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP

Scan Code for Demo Class

SECTION - A

61. Evaluate the following statements related to group 14 elements for their correctness.
(A) Covalent radius decreases down the group from C to Pb in a regular manner.
(B) Electronegativity decreases from C to Pb down the group gradually.
(C) Maximum covalance of C is 4 whereas other elements can expand their covalance due to presence of d orbitals.
(D) Heavier elements do not form $\mathrm{p} \pi-\mathrm{p} \pi$ bonds.
(E) Carbon can exhibit negative oxidation states.

Choose the correct answer from the options given below :
(1) (C) and (D) only
(2) (C), (D) and (E) only
(3) (A) and (B) only
(4) (A), (B) and (C) only

Sol. 2
(A) Down the group, radius increases
(B) EN does not decreases gradually from C to Pb .
(C) Correct
(D) Correct
(E) Range of oxidation state of carbon -4 to +4
62.

Consider the above chemical reaction. Product " A " is :
(1)

(2)

(3)

(4)

Sol. 1

63. Arrange the following elements in the increasing order of number of unpaired electrons in it.
(A) Sc
(B) Cr
(C) V
(D) Ti
(E) Mn

Choose the correct answer from the option given below :
(A) $(\mathrm{C})<($ E $)<(\mathrm{B})<(\mathrm{A})<$ (D)
(2) $($ B $)<$ (C) $<$ (D) $<$ (E) $<$ (A)
(3) $(\mathrm{A})<(\mathrm{D})<(\mathrm{C})<(\mathrm{E})<$ (B)
(4) $(\mathrm{A})<(\mathrm{D})<(\mathrm{C})<(\mathrm{B})<(\mathrm{E})$

Sol. 3

$\mathrm{Sc}=[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}$	1
$\mathrm{Cr}=[\mathrm{Ar}] \mathrm{s}^{1} 3 \mathrm{~d}^{5}$	6
$\mathrm{~V}=[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$	3
$\mathrm{Ti}=[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2}$	2
$\mathrm{Mn}=[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$	5

64.

The correct arrangement for decreasing order of electrophilic substitution for above compounds is :
(1) (II) $>$ (IV) $>$ (III) $>$ (I)
(2) (IV) $>$ (I) $>$ (II) $>$ (III)
(3) (III) $>$ (I) $>$ (II) $>$ (IV)
(4) (III) $>$ (IV) $>$ (II) $>$ (I)

Sol. 3
Electrophilic substitution reaction α EDG

65. Identify the product " A " in the following reaction.

(1)

(2)

(3)

(4)

Sol. 3

66. The major products formed :

A and B respectively are :
(1)

(2)

(3)

(4)

Sol. 4

67. Molality (m) of 3 M aqueous solution of NaCl is :
(Given : Density of solution $=1.25 \mathrm{~g} \mathrm{~mL}^{-1}$, Molar mass in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{Na}-23, \mathrm{Cl}-35.5$)
(1) 3.85 m
(2) 2.90 m
(3) 2.79 m
(4) 1.90 m

Sol. 3
Molality $=\frac{\mathrm{M} \times 1000}{1000 \mathrm{~d}-\mathrm{M} \times \text { mol. wt. of solute }}$

$$
\begin{aligned}
& =\frac{3 \times 1000}{1000 \times 1.25-3 \times 58.5} \\
& =\frac{3000}{1250-175.5} \\
& =\frac{3000}{1074.5}=2.79 \mathrm{~m}
\end{aligned}
$$

68. Match List-I with List-II.

List-I (Alkali Metal)		List-II (Emission Wavelength in nm)	
(A)	Li	(I)	589.2
(B)	Na	(II)	455.5
(C)	Rb	(III)	670.8
(D)	Cs	(IV)	780.0

Choose the correct answer from the options give below :
(1) (A)-(II), (B)-(IV), (C)-(III), (D)-(I)
(2) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)
(3) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(4) (A)-(I), (B)-(IV), (C)-(III), (D)-(II)

Sol. 3
Fact based
69. Match List-I with List-II.

List-I (Reaction)		List-II (Type of redox reaction)	
(A)	$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}$	(I)	Decomposition
(B)	$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \rightarrow 2 \mathrm{PbO}_{(\mathrm{s})}+4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$	(II)	Displacement
(C)	$2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq.})}+\mathrm{H}_{2(\mathrm{~g})}$	(III)	Disproportionation
(D)	$2 \mathrm{NO}_{2(\mathrm{~g})}+2^{-} \mathrm{OH}(\mathrm{aq}.) \rightarrow \mathrm{NO}_{2(\mathrm{aq.})}^{-}+\mathrm{NO}_{3(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	(IV)	Combination

Choose the correct answer from the options give below :
(1) (A)-(IV), (B)(I), (C)-(II), (D)-(III)
(2) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
(3) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(4) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)

Sol. 1
Fact
70. How can an electrochemical cell be converted into an electrolytic cell ?
(1) Applying an external opposite potential lower than E^{0} cell.
(2) Reversing the flow of ions in salt bridge.
(3) Exchanging the electrodes at anode and cathode.
(4) Applying an external opposite potential greater than E^{0} cell.

Sol. 4

Electrochemical cell	\rightarrow	Electrolytic cell
If external opposite potential	$>$	$\mathrm{E}^{\mathbf{o}}$ cell

71. During the detection of acidic radical present in a salt, a student gets a pale yellow precipitate soluble with difficulty in $\mathrm{NH}_{4} \mathrm{OH}$ solution when sodium carbonate extract was first acidified with dil. NHO_{3} and then AgNO_{3} solution was added. This indicates presence of :
(1) Br^{-}
(2) I^{-}
(3) Cl^{-}
(4) CO_{3}^{2-}

Sol. 2

When $\mathrm{Na}_{2} \mathrm{CO}_{3}$ extract of the salt acidified with dil HNO_{3} and AgNO_{3} solution is added to it, a yellow ppt of AgI which is insoluble in excess $\mathrm{NH}_{4} \mathrm{OH}$ confirms the presence of I^{-}ion.

$$
\mathrm{NaI}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\underset{\text { yellow ppt }}{\mathrm{AgI}}
$$

72. The ratio $\frac{\mathrm{K}_{\mathrm{P}}}{\mathrm{K}_{\mathrm{C}}}$ for the reaction :
$\mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}$ is :
(1) $(\mathrm{RT})^{1 / 2}$
(2) $\frac{1}{\sqrt{\mathrm{RT}}}$
(3) RT
(4) 1

Sol. 2

$$
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{ng}=1-1-\frac{1}{2}=-\frac{1}{2}$
$\mathrm{k}_{\mathrm{P}}=\mathrm{k}_{\mathrm{C}}(\mathrm{RT})^{-1 / 2}$
$\mathrm{kp}=\frac{\mathrm{kc}}{\sqrt{\mathrm{RT}}}$
$\frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{k}_{\mathrm{c}}}=\frac{1}{\sqrt{\mathrm{RT}}}$
73. Given below are two statements :

Statement-I : PF_{5} and BrF_{5} both exhibit $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation.
Statement-II : Both SF_{6} and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ exhibit $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation.
In the light of the above statements, choose the correct answer from the options given below :
(1) Statement-I is true but statement-II is false
(2) Statement-I is false but Statement-II is true
(3) Both Statement-I and Statement-II are false
(4) Both Statement-I and Statement-II are true

Sol. 3

$\mathrm{PF}_{5} \rightarrow \mathrm{sp}^{3} \mathrm{~d}$
$\mathrm{BrF}_{5} \rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$
$\mathrm{SF}_{6} \rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \rightarrow \mathrm{d}^{2} \mathrm{sp}^{3}$
74. Consider the given reaction, identify the major product P .

(1)

(2) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
(3)

(4)

Sol. 4

75. The correct statement among the following, for a "chromatography" purification method is :
(1) R_{f} of a polar compound is smaller than that of a non-polar compound.
(2) Non-polar compounds are retained at top and polar compounds come down in column chromatography.
(3) Organic compounds run faster than solvent in the thin layer chromatographic plate.
(4) R_{f} is an integral value.

Sol. 1
Non polar compound are having higher value of R_{f} then polar compound
$\mathrm{R}_{\mathrm{f}}=\frac{\text { Distance traveled by compound }}{\text { Distance traveled by solvent }}$
76. The incorrect statement regarding the geometrical isomers of 2-butenne is:
(1) cis-2-butenne has less dipole moment than trans-2-butene.
(2) cis-2-butene and trans-2-butene are not interconvertible at room temperature.
(3) cis-2-butene and trans-2-butene are stereoisomers.
(4) trans-2-butene is more stable than cis-2-butene

Sol. 1

cis-2-butene trans-2-butene
cis-2-butene has more dipole moment than trans-2-butene and due to restrict rotation (double bond) they are not inter convertible.
Both are geometrical isomers (stereoisomer) to each other.
77. The number of ions from the following that are expected to behave as oxidizing agent is : $\mathrm{Sn}^{4+}, \mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Tl}^{3+}, \mathrm{Pb}^{4+}, \mathrm{Tl}^{+}$
(1) 2
(2) 3
(3) 1
(4) 4

Sol. 1
Due to inert pair effect, Ti^{3+} and Pb^{4+} can behave as oxidising agent.
78. The incorrect statements regarding enzymes are :
(A) Enzymes are biocatalysts.
(B) Enzymes are non-specific and can catalyse different kinds of reactions.
(C) Most enzymes are globular proteins
(D) Enzyme-oxidase catalyses the hydrolysis of maltose into glucose

Choose the correct answer from the option given below :
(1) (B), (C) and (D)
(2) (A), (B) and (C)
(3) (B) and (C)
(4) (B) and (D)

Sol. 4

- Enzymes are biocatalysts which are specific in nature.
- Enzymes are mainly globular proteins.
- Maltase is an enzyme secreted by small intestine that catalyses the hydrolysis of maltose into glucose.

79. Match List-I with List-II.

List-I (Tetrahedral complex)		List-II (Electronic configuration)	
(A)	TiCl $_{4}$	(I)	$\mathrm{e}^{2}, \mathrm{t}_{2}^{0}$
(B)	$\left[\mathrm{FeO}_{4}\right]^{2-}$	(II)	$\mathrm{e}^{4}, \mathrm{t}_{2}^{3}$
(C)	$\left[\mathrm{FeCl}_{4}\right]^{-}$	(III)	$\mathrm{e}^{0}, \mathrm{t}_{2}^{0}$
(D)	$\left[\mathrm{CoCl}_{4}\right]^{2-}$	(IV)	$\mathrm{e}^{2}, \mathrm{t}_{2}^{3}$

Choose the correct answer from the options given below :
(1) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(2) (A)-(I), (B)-(III), (C)-(IV), (D)-(II)
(3) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(4) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)

Motílon

Sol. 3

80. The correct IUPAC name of $\left[\mathrm{PtBr}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ is :
(1) bis(trimethylphosphine)dibromoplatinum(II)
(2) dibromodi(trimethylphosphine)platinum(II)
(3) dibromobis(trimethylphosphine)platinum(II)
(4) bis[bromo(trimethylphosphine)]platinum(II)

Sol. 3
Dibronobis(trimethylphosphine) platinum (II)

SECTION - B

81. An amine (X) is prepared by ammonolysis of benzyl chloride. On adding p-toluenesulphonyl chloride to it the solution remains clear. Molar mass of the amine (X) formed is \qquad $\mathrm{g} \mathrm{mol}^{-1}$.
(Given molar mass in gmol $^{-1} \mathrm{C}: 12, \mathrm{H}: 1, \mathrm{O}: 16, \mathrm{~N}: 14$)
Sol. 287

Molar mass of (X) is $287 \mathrm{~g} \mathrm{~mol}^{-1}$
82. When ' X ' $\times 10^{-2} \mathrm{ml}$ methanol (molar mass $=32 \mathrm{~g}$; density $=0.792 \mathrm{~g} / \mathrm{cm}^{3}$) is added to 100 mL water (density $=$ $1 \mathrm{~g} / \mathrm{cm}^{3}$), the following diagram is obtained.

$\mathrm{x}=$ \qquad (nearest integer).
[Given : Molal freezing point depression constant of water at $273.15 \mathrm{~K}^{\text {is }} 1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]

Sol. 543
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}=273.15-270.65=2.5 \mathrm{~K}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times$ molality $\Rightarrow 2.5=1.86 \times \frac{\mathrm{n}}{0.1}$
$\mathrm{n}_{\mathrm{CH}_{3} \mathrm{OH}}=0.1344$ moles
mass of $\mathrm{CH}_{3} \mathrm{OH}=0.1344 \times 32=4.3 \mathrm{~g}$
Volume of $\mathrm{CH}_{3} \mathrm{OH}=\frac{\text { mass }}{\text { density }}=\frac{4.3}{0.792}=5.43 \mathrm{ml}=543 \times 10^{-2} \mathrm{ml}$
Ans. $\rightarrow 543$
83. Number of carbocations from the following that are not stabilized by hyperconjugation is-

Sol. 5

($8 \alpha-\mathrm{H}$)

No $\alpha-\mathrm{H}$
(No Hyperconjugation)
+

$\mathrm{CH}_{2}-\mathrm{OCH}_{3}$
(Stablish by
resonance)

$9 \alpha-\mathrm{H}$
(Stablish by resonance)

$9 \alpha-H$

(No $\alpha^{-} \mathrm{H}$)
(No Hyperconjugation)

(Stablise by resonance)
84.

The ratio of number of oxygen atoms to bromine atoms in the product Q is \qquad $\times 10^{-1}$.
Sol. 15

(Q)

In Q Total oxygen atoms $=3$
Total Bromine atoms $=2$
ration $=\frac{3}{2}=1.5=15 \times 10^{-1}$
85. Consider the two different first order reactions given below
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ (Reaction 1)
$\mathrm{P} \rightarrow \mathrm{Q}$ (Reaction 2)
The ratio of the half life of reaction $1:$ Reaction 2 is $5: 2$ If t_{1} and t_{2} represent the time taken to complete $\frac{2}{3}^{\text {rd }}$ and $\frac{4}{5}^{\text {th }}$ of reaction 1 and Reaction 2, respectively, then the value of the ratio $t_{1}: t_{2}$ is \qquad $\times 10^{-1}$ (nearest integer).
[Given : $\log _{10}(3)=0.477$ and $\log _{10}(5)=0.699$]
Sol. 17
$\frac{\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{I}}}{\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{II}}}=\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{5}{2}$
$\mathrm{k}_{1} \mathrm{t}_{1}=\ln \frac{1}{1-\frac{2}{3}}=\ln 3$
$\mathrm{k}_{2} \mathrm{t}_{2}=\ln \frac{1}{1-\frac{4}{5}}=\ln 5$
eq (1) / (2)
$\frac{\mathrm{k}_{1} \mathrm{t}_{1}}{\mathrm{k}_{2} \mathrm{t}_{2}}=\frac{0.4771}{0.6991}$
$\frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\frac{0.47791}{0.6991} \times \frac{5}{2}=1.7$
$=17 \times 10^{-1}$
Ans $\rightarrow 17$
86. For hydrogen atom, energy of an electron in first excited state is $-3.4 \mathrm{eV}, \mathrm{K} . \mathrm{E}$. of the same electron of hydrogen atom is $\boldsymbol{x} \mathrm{eV}$. Value of \boldsymbol{x} is \qquad $\times 10^{-1} \mathrm{eV}$. (Nearest integer)
Sol. 34
$\mathrm{KE}=-\mathrm{T} . \mathrm{E}$.
$=-(-3.4)=+3.4 \mathrm{ev}$
$=34 \times 10^{-1}$
Ans. $\rightarrow 34$
87. Consider the following reaction

$$
\mathrm{NiS}+\mathrm{HNO}_{3}+\mathrm{HCl} \rightarrow \mathrm{~A}+\mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}
$$

The number of protons that do not involve in hydrogen bonding in the product B is \qquad .

Sol. 12
$3 \mathrm{NiS}+2 \mathrm{HNO}_{3}+6 \mathrm{HCl} \rightarrow 3 \mathrm{NiCl}_{2}+2 \mathrm{NO}+3 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$

$B \rightarrow$

88. Total number of species from the following with central atom utilizing sp^{2} hybrid orbitals for bonding is \qquad . $\mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{SiO}_{2}, \mathrm{BeCl}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{BCl}_{3}, \mathrm{HCHO}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{BF}_{3}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
Sol. 6
Species with sp^{2} hyb $^{\mathrm{n}}$ on central atom are.
$\mathrm{SO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{BCl}_{3}, \mathrm{HCHO}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{BF}_{3}$
89. Among $\mathrm{VO}_{2}^{+}, \mathrm{MnO}_{4}^{-}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$, the spin-only magnetic moment value of the species with least oxidizing ability is \qquad BM (Nearest integer).
(Given atomic number $\mathrm{V}=23, \mathrm{Mn}=25, \mathrm{Cr}=24$)
Sol. 0
For 3d series
oxidising power $\mathrm{V}^{5+}<\mathrm{Cr}^{6+}<\mathrm{Mn}^{7+}$
$\mathrm{V}^{5+} \Rightarrow[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{0}$
Number of uinpaired $\mathrm{e}^{-}=0$
$\mu=0$
90. For the reaction at $298 \mathrm{~K}, 2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}, \Delta \mathrm{H}=400 \mathrm{kJmol}^{-1}$ and $\Delta \mathrm{S}=0.2 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$. The reaction will become spontaneous above \qquad K.

Sol. 2000
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\Delta \mathrm{G}=0 \rightarrow \Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$
$\mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}=\frac{400}{0.2}=2000 \mathrm{k}$
Ans. $\rightarrow 2000$

GIVE YOUR JEE ADVANCED 2024 PREPRATION A FINAL CHECK

95\%ile to 97.99\%ile

Offline : 50\% scholarship
Online : 100\% scholarship

98\%ile to 98.99\%ile
Offline : 100% scholarship
Online : 100\% scholarship

99\%ile or ABOVE VICTORY
 BATCH

99.99\%ile will be provided with free residential facilities (Hostel+Food)

Continuing to keep the pledge of imparting education for the last 17 Years

$65136+$ wimem 12142 3258417875

Most Promising RANKS
Produced by MOTION Faculties

NEET / AlIMS

JEE MAIN+ADVANCED

Nation's Best SELECTION
 Percentage (\%) Ratio

Student Qualified in NEET
(2023)

6492/7084 = 91.64\% (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANCED
(2023)

2747/5182 = 53.01\%
(2022)

1756/4818 = 36.45\%

Student Qualified in JEE MAIN
(2024-First Attemp)
6495/10592 = 61.31\%
(2023)
$5993 / 8497=70.53 \%$
(2022)

4818/6653 $=72.41 \%$

