JEE MAIN 2024 asssonz Paper with Solution

CHEMISTRY | $04^{\text {th }}$ April 2024 _Shift-2

Motílon

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP

Scan Code for Demo Class

SECTION - A

61.

Product P is
(1)

(2)

(3)

(4)

Sol. 3

Saytzeff's alkene
62. Given below are two statements:

Statement I: The correct order of first ionization enthalpy values of $\mathrm{Li}, \mathrm{Na}, \mathrm{F}$ and Cl is $\mathrm{Na}<\mathrm{Li}<\mathrm{Cl}<\mathrm{F}$.
Statement II: The correct order of negative electron gain enthalpy values of $\mathrm{Li}, \mathrm{Na}, \mathrm{F}$ and Cl is $\mathrm{Na}<\mathrm{Li}<\mathrm{F}<\mathrm{Cl}$
In the light of the above statements, choose the correct answer from the options given below:
(1) Both Statement I and Statement II are false
(2) Both Statement I and Statement II are true
(3) Statement I is false but Statement II is true
(4) Statement I is true but Statement II is false

Sol. 2
Fact both statement are correct
63. Choose the Incorrect Statement about Dalton's Atomic Theory
(1) All the atoms of a given element have identical properties including identical mass.
(2) Matter consists of indivisible atoms.
(3) Compounds are formed when atoms of different elements combine in any ratio.
(4) Chemical reactions involve reorganization of atoms

Sol. 3
Compounds are formed when atoms of different elements combine in any ratio \Rightarrow Incorrect
64. Fuel cell, using hydrogen and oxygen as fuels,
A. has been used in spaceship
B. has as efficiency of 40% to produce electricity
C. uses aluminum as catalysts
D. is eco-friendly
E. is actually a type of Galvanic cell only

Choose the correct answer from the options given below:
(1) A, B, D only
(2) A, B, D, E only
(3) A, D, E only
(4) A, B, C only

Sol. 3
has been used in spaceship
eco friendly
type of Galvanic cell
65. A first row transition metal in its +2 oxidation state has a spin-only magnetic moment value of 3.86 BM. The atomic number of the metal is
(1) 25
(2) 26
(3) 23
(4) 22

Sol. 3

$\mathrm{u}=3.86$ B.M. $=\sqrt{15}$ B.M. $=\sqrt{\mathrm{n}(\mathrm{n}+2)}$
$\mathrm{n}=3$ unpaired $\mathrm{e}^{-} \rightarrow \mathrm{d}^{3} \quad$ or $\quad \mathrm{d}^{7}$
$\downarrow \quad \downarrow$
$23 \quad 27$
to given option $\mathrm{d}^{3}(23)$ is correct.
66. Match List I with List II

LIST I		LIST II	
A.	α - Glucose and $\alpha-$ Galactose	I.	Functional isomers
B.	α - Glucose and β - Glucose	II.	Homologous
C.	α - Glucose and $\alpha-$ Fructose	III.	Anomers
D.	α - Glucose and α - Ribose	IV.	Epimers

Choose the correct answer from the options given below:
(1) A-III, B-IV, C-I, D-II
(2) A-IV, B-III, C-II, D-I
(3) A-IV, B-III, C-I, D-II
(4) A-III, B-IV, C-II, D-I

Sol. 3
(A) α - Glucose $\& \alpha$ - Galactose $\rightarrow \mathrm{C}_{4}$ epimer
(B) α - Glucose $\& \beta$ - Glucose \rightarrow Anomer
(C) α - Glucose $\& \alpha$ - fructose \rightarrow functional isomer
(D) α - Glucose $\& \alpha$ - Ribose \rightarrow Homologous
67. The equilibrium constant for the reaction
$\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ is $\mathrm{K}_{\mathrm{c}}=4.9 \times 10^{-2}$. The value of K_{c} for the reaction given below is
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ is:
(1) 416
(2) 49
(3) 41.6
(4) 4.9

Sol. 1
$\mathrm{k}^{1}=\frac{1}{\mathrm{k}_{\mathrm{e}}^{2}}=\frac{1}{\left(4.9 \times 10^{-2}\right)^{2}}$
$\mathrm{k}^{1}=\frac{10^{4}}{(4.9)(4.9)}=416.5$

$$
=416
$$

68. Common name of benzene $-1,2$ - diol is -
(1) resorcinol
(2) catechol
(3) o-cresol
(4) quinol

Sol. 2

Benzene - 1 , 2 - diol
'Catechol'
69. If an iron (III) complex with the formula $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{x}(\mathrm{CN})_{y}\right]^{-}$has no electron in its e_{g} orbital, then the value of $x+y$ is
(1) 5
(2) 6
(3) 4
(4) 3

Sol. 2
If there is no e^{-}in eg. orbital ie $t_{2} g^{5}$ is req in +3 O.S. of Fe.
Which is possible in C.N. $=6$.
Thus $\mathrm{x}+\mathrm{y}=6$
70. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}+\mathrm{NaOH} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}$ Product ' A '

Consider the above reactions, identify product B and product C .
(1) $\mathrm{B}=\mathrm{C}=2$-Propanol
(2) $\mathrm{B}=\mathrm{C}=1$-Propanol
(3) $\mathrm{B}=$ 1-Propanol $\mathrm{C}=2$-Propanol
(4) $\mathrm{B}=2$-Propanol $\mathrm{C}=1$-Propanol

Sol. 4

(A)

71. The correct statement/s about Hydrogen bonding is/are
A. Hydrogen bonding exists when H is covalently bonded to the highly electro negative atom.
B. Intermolecular H bonding is present in o-nitro phenol
C. Intramolecular H bonding is present in HF.
D. The magnitude of H bonding depends on the physical state of the compound.
E. H-bonding has powerful effect on the structure and properties of compounds

Choose the correct answer from the options given below:
(1) A, D, E only
(2) A only
(3) A, B, D only
(4) A, B, C only

Sol. 1

Fact

Motíon

72. For a strong electrolyte, a plot of molar conductivity against (concentration) ${ }^{1 / 2}$ is a straight line, with a negative slope, the correct unit for the slope is
(1) $\mathrm{Scm}^{2} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{1 / 2}$
(2) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{-1 / 2}$
(3) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1} \mathrm{~L}^{1 / 2}$
(4) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-3 / 2} \mathrm{~L}$

Sol. 2

$$
\lambda_{\mathrm{m}} \quad \mathrm{~V} / \mathrm{s} \quad \sqrt{\mathrm{c}}
$$

$\lambda_{\mathrm{m}}=\lambda_{\mathrm{m}}^{0}-\mathrm{b} \sqrt{\mathrm{c}}$
unit of $b \sqrt{c}=$ unit of λ_{m}
unit of $\mathrm{b}=\frac{\mathrm{Scm}^{2} \mathrm{~m}_{0} 1^{-1}}{\mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2}}=\mathrm{Scm}^{2} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{1 / 2}$
73.

In the above chemical reaction sequence " A " and " B " respectively are
(1) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$and KMnO_{4}
(2) $\mathrm{O}_{3}, \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaOH}_{\text {(alc) }} / \mathrm{I}_{2}$
(3) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$and $\mathrm{NaOH}_{\text {(alc) }} / \mathrm{I}_{2}$
(4) $\mathrm{O}_{3}, \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$ and KMnO_{4}

Sol. 2

74. When MnO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to a salt (A), the greenish yellow gas liberated as salt (A) is:
(1) CaI_{2}
(2) KNO_{3}
(3) NaBr
(4) $\mathrm{NH}_{4} \mathrm{Cl}$

Sol. 4

$$
\begin{aligned}
& 4 \mathrm{MnO}_{2}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 4 \mathrm{MnSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}+4[\mathrm{O}] \\
& \frac{2 \mathrm{NH}_{4} \mathrm{Cl}+4[\mathrm{O}] \rightarrow \mathrm{N}_{2}+\mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{MnO}_{2}+4 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow 4 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \uparrow+\mathrm{Cl}_{2} \uparrow}
\end{aligned}
$$

75. Correct order of stability of carbanion is -

a

b

c

d
(1) $d>a>c>b$
(2) $a>b>c>d$
(3) $d>c>b>a$
(4) $c>b>d>a$

Sol. 3

Aromatic

Anti aromatic
76. Find out the major product formed form the following reaction. [Me : $\left.-\mathrm{CH}_{3}\right]$

(1)

(2)

(3)

(4)

Sol. 3

77. The number of species from the following that have pyramidal geometry around the central atom is \qquad $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}, \mathrm{SO}_{4}^{2-}, \mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
(1) 4
(2) 2
(3) 3
(4) 1

Sol. 4

sp^{3}
Td geo.

Td geo.

Td geo.
Pyramidal shape

sp^{3}
Td geo.

According to question SO_{3}^{-2} have only pyramidal shape.
78. The correct order of the first ionization enthalpy is
(1) $\mathrm{Al}>\mathrm{Ga}>\mathrm{Tl}$
(2) $\mathrm{Tl}>\mathrm{Ga}>\mathrm{Al}$
(3) $\mathrm{B}>\mathrm{Al}>\mathrm{Ga}$
(4) $\mathrm{Ga}>\mathrm{Al}>\mathrm{B}$

Sol. 2

79. The number of unpaired d-electrons in $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is \qquad .
(1) 4
(2) 0
(3) 2
(4) 1

Sol. 2
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ in higher OS of $\mathrm{CO} \mathrm{H}_{2} \mathrm{O}$ work as SFL
Thus

80. The adsorbent used in adsorption chromatography is/are -
A. silica gel
B. alumina
C. quick lime
D. magnesia

Choose the most appropriate answer from the options given below :
(1) A only
(2) B only
(3) A and B only
(4) C and D only

Sol. 3
Polar \& Basic adsorbent used in adsorption chromatography.
(Alumina or Silica gel can be used)

SECTION - B

81. Vanillin compound obtained from vanilla beans, has total sum of oxygen atoms and π electrons is \qquad .
Sol. 11

Total oxygen atom $=3$
Total π-electron $=8$

$$
3+8=11
$$

82. Consider the following reaction, the rate expression of which is given below
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$
rate $=\mathrm{k}[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 2}$
The reaction is initiated by taking 1 M concentration of A and B each. If the rate constant (k) is $4.6 \times 10^{-2} \mathrm{~s}^{-1}$, then the time taken for A to become 0.1 M is \qquad sec.
(nearest integer)

Sol. 50

$\gamma=\mathrm{k}(\mathrm{A})^{1 / 2}(\mathrm{~B})^{1 / 2}$
$\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}$
$\mathrm{t}=0 \quad 1 \mathrm{M} \quad 1 \mathrm{M}$
t $0.1 \quad 0.1$
$\mathrm{r}_{\mathrm{t}}=\mathrm{k}(0.1)^{1} \quad \mathrm{t}=$?
$\mathrm{r}_{0}=\mathrm{k}(1)^{1}$
$\mathrm{t}=\frac{2.303}{4.6 \times 10^{-2}} \log \frac{1}{0.1}=\frac{230.3}{4.6}=50 \mathrm{~s}$
$\mathrm{t}=50 \mathrm{~s}$
83. From 6.55 g of aniline, the maximum amount of acetanilide that can be prepared will be \qquad $\times 10^{-1} \mathrm{~g}$.
Sol. 95

Moles of anline $=\frac{6.55}{93}=0.07$
Moles of Acetanilide $=0.07$

$$
\begin{aligned}
\text { Mass }=(0.07)(135) & =9.5 \mathrm{~g} \\
& =95
\end{aligned}
$$

84. Three moles of an ideal gas are compressed isothermally from 60 L to 20 L using constant pressure of 5 atm. Heat exchange Q for the compression is \qquad Lit. atm.
Sol. 200
$\mathrm{n}=3$
$\mathrm{V}_{1}=60 \mathrm{~L} \quad \mathrm{~V}_{2}=20 \mathrm{~L}$
Pext $=5 \mathrm{~atm}$
$\Delta \mathrm{U}=\mathrm{W}+\mathrm{Q}=0$
$\mathrm{W}=-\mathrm{Q}$
$\mathrm{W}=-\mathrm{P}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \quad=-(5)(-40)$ $=200 \mathrm{~atm} \cdot \mathrm{~L}$
$\mathrm{Q}=-200 \mathrm{~atm} \cdot \mathrm{~L}$
85. Phthalimide is made to undergo following sequence of reactions.

Total number of π bonds present in product ' P ' is/are \qquad
Sol. 8

Total π-bonds $=8$
86. The maximum number of orbitals which can be identified with $n=4$ and $m_{1}=0$ is

Sol. 4
$\mathrm{n}=4 \& \mathrm{~m}=0$
$\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$
no. of orbitals with $n=4 \& m=0$

$$
\Rightarrow 4
$$

87. $\quad 2.7 \mathrm{~kg}$ of each of water and acetic acid are mixed. The freezing point of the solution will be $-\mathrm{x}{ }^{\circ} \mathrm{C}$. Consider the acetic acid does not dimerise in water, nor dissociates in water. $\mathrm{x}=$ \qquad (nearest integer)
[Given: Molar mass of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$, acetic acid $=60 \mathrm{~g} \mathrm{~mol}^{-1}$
${ }^{\mathrm{K}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}: 1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}}$
${ }^{\mathrm{K}} \mathrm{f}$ acetic acid : $3.90 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
freezing point : $\mathrm{H}_{2} \mathrm{O}=273 \mathrm{~K}$, acetic acid $=290 \mathrm{~K}$]
Sol. 21
$\mathrm{M}_{\mathrm{H}_{2} \mathrm{O}}=2.7 \mathrm{~kg} \quad \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{x}^{\circ} \mathrm{C}$
$\mathrm{M}_{\mathrm{CH}_{3} \mathrm{COOH}}=2.7 \mathrm{~kg}$
$\mathrm{i}=1$ (as given is Q^{n})
as moles of $\mathrm{CH}_{3} \mathrm{COOH}$ is lower \Rightarrow solute
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{(1.86)\left(2.7 \times 10^{3}\right)}{(60)(2.7)}=31^{\circ} \mathrm{C}$
88. Number of compounds / species from the following with non-zero dipole moment is \qquad .
$\mathrm{BeCl}_{2}, \mathrm{BCl}_{3}, \mathrm{NF}_{3}, \mathrm{XeF}_{4}, \mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HBr}, \mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{HCl}$
Sol. 5
$\mathrm{u} \neq \mathrm{O}$ for the following compounds.
$\mathrm{NF}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$ (drago), $\mathrm{HBr}, \mathrm{HCl}$
89. A first row transition metal with highest enthalpy of atomisation, upon reaction with oxygen at high temperature forms oxides of formula $\mathrm{M}_{2} \mathrm{O}_{\mathrm{n}}$ (where $\mathrm{n}=3,4,5$). The 'spin-only' magnetic moment value of the amphoteric oxide from the above oxides is \qquad BM (near integer)
(Given atomic number: $\mathrm{Sc}: 21, \mathrm{Ti}: 22, \mathrm{~V}: 23, \mathrm{Cr}: 24, \mathrm{Mn}: 25, \mathrm{Fe}: 26, \mathrm{Co}: 27, \mathrm{Ni}: 28, \mathrm{Cu}: 29, \mathrm{Zn}: 30$)

Sol. 0

Highest enthalpy of atomization $=$ vanadium $(\mathrm{V})=515 \mathrm{~kJ} / \mathrm{mol}$
Oxide $=\mathrm{V}_{2} \mathrm{O}_{5}$ (Amphoteric)
$\mathrm{V}^{+5} \mathrm{O} . \mathrm{S} \Rightarrow \mathrm{d}^{\mathrm{o}} \Rightarrow$ no of unpaired $\mathrm{e}^{-}=0$
$\mathrm{u}=\sqrt{\mathrm{n}(\mathrm{n}+2)}=0$.
90. The total number of 'sigma' and 'Pi' bonds in 2-oxohex-4-ynoic acid is \qquad .
Sol. 18

total no. of σ-bond are 14
total no. of π-bond are 4
$=18$

GIVE YOUR JEE ADVANCED 2024 PREPRATION A FINAL CHECK

95\%ile to 97.99\%ile

Offline : 50\% scholarship
Online : 100\% scholarship

98\%ile to 98.99\%ile
Offline : 100% scholarship
Online : 100\% scholarship

99\%ile or ABOVE VICTORY
 BATCH

99.99\%ile will be provided with free residential facilities (Hostel+Food)

Continuing to keep the pledge of imparting education for the last 17 Years

$65136+$ wimem 12142 3258417875

Most Promising RANKS
Produced by MOTION Faculties

NEET / AlIMS

JEE MAIN+ADVANCED

Nation's Best SELECTION
 Percentage (\%) Ratio

Student Qualified in NEET
(2023)

6492/7084 = 91.64\% (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANCED
(2023)

2747/5182 = 53.01\%
(2022)

1756/4818 = 36.45\%

Student Qualified in JEE MAIN
(2024-First Attemp)
6495/10592 = 61.31\%
(2023)
$5993 / 8497=70.53 \%$
(2022)

4818/6653 $=72.41 \%$

