JEE MAIN 2024 SESSION-2 Paper with Solution

CHEMISTRY | 04th April 2024 _ Shift-2

FOUNDATION (Class 6th to 10th) Olympiads/Boards MOTION LEARNING APP

CORPORATE OFFICE "Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.) Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

Scan Code for Demo Class

SECTION - A

Saytzeff's alkene

62. Given below are two statements:

Statement I: The correct order of first ionization enthalpy values of Li, Na, F and Cl is Na < Li < Cl < F. Statement II: The correct order of negative electron gain enthalpy values of Li, Na, F and Cl is Na < Li < F < Cl In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are false
- (2) Both Statement I and Statement II are true
- (3) Statement I is false but Statement II is true
- (4) Statement I is true but Statement II is false
- Sol. 2

Fact both statement are correct

- 63. Choose the Incorrect Statement about Dalton's Atomic Theory
 - (1) All the atoms of a given element have identical properties including identical mass.
 - (2) Matter consists of indivisible atoms.
 - (3) Compounds are formed when atoms of different elements combine in any ratio.
 - (4) Chemical reactions involve reorganization of atoms

Sol.

3

Compounds are formed when atoms of different elements combine in any ratio \Rightarrow Incorrect

- 64. Fuel cell, using hydrogen and oxygen as fuels,
 - A. has been used in spaceship
 - B. has as efficiency of 40 % to produce electricity
 - C. uses aluminum as catalysts
 - D. is eco-friendly
 - E. is actually a type of Galvanic cell only
 - Choose the correct answer from the options given below:

 $(1) A, B, D only \qquad (2) A, B, D, E only$

Sol.

3

has been used in spaceship eco friendly type of Galvanic cell (3) A, D, E only

(4) A, B, C only

ΜοτίοΝ

65. A first row transition metal in its +2 oxidation state has a spin-only magnetic moment value of 3.86 BM. The atomic number of the metal is

JEE MAIN 2024

SESSION-2

(1) 25 (2) 26 (3) 23 (4) 22 3 $u = 3.86 \text{ B.M.} = \sqrt{15} \text{ B.M.} = \sqrt{n(n+2)}$ $n = 3 \text{ unpaired } e^- \rightarrow d^3 \text{ or } d^7$ $\downarrow \qquad \downarrow$ 23 27

to given option $d^3(23)$ is correct.

66. Match List I with List II

	LIST I		LIST II	
A.	α - Glucose and α - Galactose	I.	Functional isomers	
B.	α - Glucose and β - Glucose	II.	Homologous	
C.	α - Glucose and α - Fructose	III.	Anomers	
D.	α - Glucose and α - Ribose	IV.	Epimers	

Choose the correct answer from the options given below:

(1) A-III, B-IV, C-I, D-II	(2) A-IV, B-III, C-II, D-I

(3) A-IV, B-III, C-I, D-II (4) A-III, B-IV, C-II, D-I

Sol.

3

Sol.

(A) α – Glucose & α – Galactose \rightarrow C₄ epimer

(B) α – Glucose & β - Glucose \rightarrow Anomer

- (C) α Glucose & α fructose \rightarrow functional isomer
- (D) α Glucose & α Ribose \rightarrow Homologous

67. The equilibrium constant for the reaction

$$SO_{3}(g) \rightleftharpoons SO_{2}(g) + \frac{1}{2}O_{2}(g) \text{ is } K_{c} = 4.9 \times 10^{-2}. \text{ The value of } K_{c} \text{ for the reaction given below is}$$

$$2SO_{2}(g) + O_{2}(g) \rightleftharpoons 2SO_{3}(g) \text{ is:}$$

$$(1) 416 \qquad (2) 49 \qquad (3) 41.6 \qquad (4) 4.9$$

$$1$$

Sol.

$$k^{1} = \frac{1}{k_{e}^{2}} = \frac{1}{\left(4.9 \times 10^{-2}\right)^{2}}$$
$$k^{1} = \frac{10^{4}}{(4.9)(4.9)} = 416.5$$
$$= 416$$

ΜοτίοΝ

68.

Sol.

69.

Sol.

70.

Sol.

71.

SESSION-2 Common name of benzene -1, 2 - diol is -(2) catechol (4) quinol (1) resorcinol (3) o-cresol 2 OH OH Benzene -1, 2 - diol'Catechol' If an iron (III) complex with the formula $\left[Fe(NH_3)_x(CN)_y \right]^-$ has no electron in its eg orbital, then the value of x + y is (1)5(2) 6(3) 4(4) 32 If there is no e⁻ in eg. orbital ie t_2g^5 is req in +3 O.S. of Fe. Which is possible in C.N. = 6. Thus x + y = 6 $CH_{3} - CH_{2} - CH_{2} - Br + NaOH \xrightarrow{C_{2}H_{3}OH} Product 'A'$ $H_{2}O$ $Product A \xrightarrow{H_{2}O} Product "B"$ Diborane $H_{2}O/H_{2}O_{2}/\overline{O}H Product "C"$ Consider the above reactions, identify product B and product C. (1) B = C = 2-Propanol (2) B = C = 1-Propanol (3) B = 1-Propanol C = 2-Propanol (4) B = 2-Propanol C = 1-Propanol 4 $CH_3 - CH_2 - CH_2 - Br + NaOH \xrightarrow{C_2H_5 - OH} CH_3 - CH = CH_2$ (A) $CH_{3}-CH=CH_{2} \xrightarrow[H^{2}]{H^{+}} CH_{3}-CH-CH_{3}$ $CH_{3}-CH=CH_{2} \xrightarrow[H^{+}]{OH} (B)$ $B_{2}H_{6} CH_{3}-CH_{2}-CH_{2}$ $H_{2}O/H_{2}O_{2}/OH CH_{3}-CH_{2}-CH_{2}$ OH (B)The correct statement/s about Hydrogen bonding is/are A. Hydrogen bonding exists when H is covalently bonded to the highly electro negative atom. B. Intermolecular H bonding is present in o-nitro phenol C. Intramolecular H bonding is present in HF.

JEE MAIN 2024

D. The magnitude of H bonding depends on the physical state of the compound.

E. H-bonding has powerful effect on the structure and properties of compounds

- Choose the correct answer from the options given below:
- (1) A, D, E only (2) A only (3) A, B, D only (4) A, B, C only **Sol.** 1

Fact

(1) $\text{Scm}^2 \text{mol}^{-3/2} L^{1/2}$

For a strong electrolyte, a plot of molar conductivity against (concentration)^{1/2} is a straight line, with a 72. negative slope, the correct unit for the slope is (2) $\operatorname{S} \operatorname{cm}^2 \operatorname{mol}^{-3/2} L^{-1/2}$ (3) $\operatorname{S} \operatorname{cm}^2 \operatorname{mol}^{-1} L^{1/2}$ (4) $\operatorname{S} \operatorname{cm}^2 \operatorname{mol}^{-3/2} L$

Sol.

2 $\lambda_{\rm m} = V/s = \sqrt{c}$ $\lambda_{\rm m} = \lambda_{\rm m}^0 - b\sqrt{c}$ unit of $b\sqrt{c} = unit$ of λ_m unit of b = $\frac{\text{S cm}^2 m_0 l^{-1}}{\text{mol}^{1/2} L^{-1/2}} = \text{S cm}^2 \text{mol}^{-3/2} L^{1/2}$

73.
$$\overbrace{O=}^{\text{``A''}}_{H} \overbrace{O=}^{\text{``B''}}_{H} \overbrace{O=}^{\text{``B''}}_{H} O^{\text{``NA^+}}$$

In the above chemical reaction sequence "A" and "B" respectively are

(1) H_2O, H^+ and $KMnO_4$

(3)
$$H_2O, H^+$$
 and $NaOH_{(alc)}/I_2$

(4) O_3 , Zn / H₂O and KMnO₄

(2) O_3 , Zn / H₂O and NaOH_(alc)/I₂

Sol.

2

- 74. When MnO_2 and H_2SO_4 is added to a salt (A), the greenish yellow gas liberated as salt (A) is: (1) CaI₂ (2) KNO₃ (3) NaBr (4) NH₄Cl
- Sol. 4

Sol.

 $4MnO_2 + 4H_2SO_4 \rightarrow 4MnSO_4 + 4H_2O + 4[O]$ $2NH_4Cl+4[O] \rightarrow N_2+Cl_2+4H_2O$ $\overline{4\text{MnO}_2 + 4\text{H}_2\text{SO}_4 + 2\text{NH}_4\text{Cl} \rightarrow 4\text{MnSO}_4 + 8\text{H}_2\text{O} + \text{N}_2\uparrow + \text{Cl}_2\uparrow}$

75. Correct order of stability of carbanion is -

76. Find out the major product formed form the following reaction. $[Me : -CH_3]$

77. The number of species from the following that have pyramidal geometry around the central atom is $S_2O_3^{2-}, SO_4^{2-}, SO_3^{2-}, S_2O_7^{2-}$

Sol.

According to question SO_3^{-2} have only pyramidal shape.

78. The correct order of the first ionization enthalpy is (1) Al > Ga > Tl(2) Tl > Ga > Al(3) B > Al > Ga(4) Ga > Al > BSol. 2 T1 Al > Ga > due to due to d-contraction

Lanthanide d-contration

D only

79. The number of unpaired d-electrons in
$$[Co(H_2O)_6]^{3^+}$$
 is _____.(1) 4(2) 0(3) 2(4) 1**Sol. 2** $[Co(H_2O)_6]^{4^3}$ in higher OS of CO H_2O work as SFLThus $Co^{4^3} \rightarrow d^6 \rightarrow d^6 \rightarrow d^6$ no. of unpaired e⁻ $n = o$ **80.** The adsorbent used in adsorption chromatography is/are -A. silica gelB. aluminaC. quick limeChoose the most appropriate answer from the options given below :(1) A only(2) B only(3) A and B only

Sol.

3

Polar & Basic adsorbent used in adsorption chromatography. (Alumina or Silica gel can be used)

SECTION – B

81. Vanillin compound obtained from vanilla beans, has total sum of oxygen atoms and π electrons is _____. Sol. 11

H - O
OCH₃
Vanillin
$$H = 0$$
 $Total oxygen atom = 3$
 $Total \pi$ -electron = 8
 $3 + 8 = 11$

82. Consider the following reaction, the rate expression of which is given below $A + B \rightarrow C$

rate = $k[A]^{1/2}[B]^{1/2}$

The reaction is initiated by taking 1 M concentration of A and B each. If the rate constant (k) is $4.6 \times 10^{-2} \text{ s}^{-1}$, then the time taken for A to become 0.1 M is _____ sec. (nearest integer)

(neares **50**

Sol. 50
$$y = 1$$

$$\gamma = k(A)^{1/2} (B)^{1/2}$$

$$A + B \longrightarrow C$$

$$t = 0 \quad 1M \quad 1M$$

$$t \quad 0.1 \quad 0.1$$

$$r_{t} = k(0.1)^{1} \qquad t = ?$$

$$r_{0} = k(1)^{1}$$

$$t = \frac{2.303}{4.6 \times 10^{-2}} \log \frac{1}{0.1} = \frac{230.3}{4.6} = 50s$$

$$t = 50s$$

Motion Education | 394-Rajeev Gandhi Nagar | 🕲: 1800-212-1799 | url : www.motion.ac.in

83. From 6.55 g of aniline, the maximum amount of acetanilide that can be prepared will be $\underline{} \times 10^{-1}$ g. **Sol. 95**

NH-CO-CH₃

$$C_6H_5NH_2 + CH_3C-Cl \longrightarrow O$$

 $6.55 \text{ g} \qquad 0$
Moles of anline $= \frac{6.55}{93} = 0.07$
Moles of Acetanilide $= 0.07$
Mass $= (0.07) (135) = 9.5 \text{ g}$
 $= 95$

84. Three moles of an ideal gas are compressed isothermally from 60 L to 20 L using constant pressure of 5 atm. Heat exchange Q for the compression is _____ Lit. atm.

Sol. 200

n = 3 $V_1 = 60 L$ $V_2 = 20 L$ Pext = 5 atm $\Delta U = W + Q = 0$ W = -Q $W = -P_2 (V_2 - V_1) = -(5) (-40)$ = 200 atm.L

85. Phthalimide is made to undergo following sequence of reactions.

Phthalimide $\xrightarrow{(i) \text{ KOH}} \stackrel{(i) \text{ Benzylchloride}}{ \xrightarrow{(ii) \text{ Benzylchloride}}} P'$

Total number of π bonds present in product 'P' is/are_____

Sol.

8

Total π -bonds = 8

86. The maximum number of orbitals which can be identified with n = 4 and $m_1 = 0$ is Sol. 4 n = 4 & m = 0

↓ s, p, d, f no. of orbitals with n = 4 & m = 0 $\Rightarrow 4$

87. 2.7 kg of each of water and acetic acid are mixed. The freezing point of the solution will be -x °C. Consider the acetic acid does not dimerise in water, nor dissociates in water. x =_____ (nearest integer) [Given: Molar mass of water =18 g mol⁻¹, acetic acid = 60 g mol⁻¹ ^Kf H₂O : 1.86 K kg mol⁻¹

^Kf acetic acid : $3.90 \text{ K kg mol}^{-1}$ freezing point : $H_2O = 273 \text{ K}$, acetic acid = 290 K]

Sol. 21

 $M_{H_{eO}} = 2.7 \text{ kg}$ $\Delta T_{f} = x^{\circ}C$

 $M_{CH_{3}COOH} = 2.7 \text{ kg}$ i = 1 (as given is Qⁿ) as moles of CH₃COOH is lower \Rightarrow solute

$$\Delta T_{\rm f} = \frac{(1.86)(2.7 \times 10^3)}{(60)(2.7)} = 31^{\circ} {\rm C}$$

88. Number of compounds / species from the following with non-zero dipole moment is_____. BeCl₂, BCl₃, NF₃, XeF₄, CCl₄, H₂O, H₂S, HBr, CO₂, H₂, HCl

Sol.

5

 $u \neq O$ for the following compounds.

NF₃, H₂O, H₂S(drago), HBr, HCl

89. A first row transition metal with highest enthalpy of atomisation, upon reaction with oxygen at high temperature forms oxides of formula M_2O_n (where n = 3, 4, 5). The 'spin-only' magnetic moment value of the amphoteric oxide from the above oxides is _____ BM (near integer)

(Given atomic number: Sc : 21, Ti : 22, V : 23, Cr : 24, Mn : 25, Fe : 26, Co : 27, Ni : 28, Cu : 29, Zn : 30) Sol. 0

Highest enthalpy of atomization = vanadium (V) = 515 kJ/mol

 $Oxide = V_2O_5$ (Amphoteric)

 $V^{+5}O.S \Rightarrow d^{\circ} \Rightarrow$ no of unpaired $e^- = 0$

$$u = \sqrt{n(n+2)} = 0.$$

90. The total number of 'sigma' and 'Pi' bonds in 2-oxohex-4-ynoic acid is_____.

Sol. 18

$$HO - C - C - CH_2 - C = C - CH_3$$

total no. of σ -bond are 14
total no. of π -bond are 4
= 18

95%ile to 97.99%ile

Offline : 50% scholarship **Online :** 100% scholarship

98%ile to 98.99%ile

Offline : 100% scholarship **Online :** 100% scholarship

99%ile or ABOVE VICTORY BATCH

99.99%ile will be provided with free residential facilities (Hostel+Food)

Continuing to keep the pledge of **imparting education** for the **last 17 Years**

JEE (Main)

NEET/AIIMS

NTSE/OLYMPIADS

JEE (Advanced)

