JEE MAIN 2024 sesson-2 Paper with Solution

MATHS | $04^{\text {th }}$ April 2024 _ Shift-1

Motíon

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP

Scan Code for Demo Class

SECTION - A

1. One of the points of intersection of the curves $y=1+3 x-2 x^{2}$ and $y=\frac{1}{x}$ is $\left(\frac{1}{2}, 2\right)$. Let the area of the region enclosed by these curves be $\frac{1}{24}(\ell \sqrt{5}+\mathrm{m})-\mathrm{n} \log _{\mathrm{e}}(1+\sqrt{5})$, where $\ell, \mathrm{m}, \mathrm{n} \in \mathrm{N}$. Then $\ell+\mathrm{m}+\mathrm{n}$ is equal to:
(1) 30
(2) 31
(3) 32
(4) 29

Sol. (1)
$1=\mathrm{x}+3 \mathrm{x}^{2}-2 \mathrm{x}^{3}$
$2 x^{3}-3 x^{2}-x+1=0$
$(2 x-1)\left[x^{2}-x-1\right]=0$
$\mathrm{x}=\frac{1 \pm \sqrt{5}}{2}=\frac{1+\sqrt{5}}{2}$
$A=\int_{1 / 2}^{2}\left(\left(1+3 x-2 x^{2}\right)-\frac{1}{x}\right) d x$
$=\left(x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}-\ell n x\right)_{1 / 2}^{\frac{1+\sqrt{5}}{2}}$
$=\left[\frac{1+\sqrt{5}}{2}+\frac{3}{2}\left[\frac{6+2 \sqrt{5}}{4}\right]-\frac{2}{3} \frac{(6+2 \sqrt{5})(1+\sqrt{5})}{8}-\ln \left(\frac{1+\sqrt{5}}{2}\right)\right]-\left[\frac{1}{2}+\frac{3}{8}-\frac{1}{12}-\ln \frac{1}{2}\right]$
$=\left[\frac{1+\sqrt{5}}{2}+\frac{9+3 \sqrt{5}}{4}-\frac{2}{3}\left(\frac{16+8 \sqrt{5}}{8}\right)-\ell \mathrm{n}(1+\sqrt{5})+\ell \mathrm{n}_{2}\right]-\left[\frac{12+9-2}{24}-\ell \mathrm{n}_{2}\right]$
$=\left\{\frac{19+5 \sqrt{5}}{4}-\frac{32}{24}-\frac{16 \sqrt{5}}{24}-\ln (1+\sqrt{5})\right\}-\frac{19}{24}$
$=\frac{66+30 \sqrt{5}-32-16 \sqrt{5}}{24}-\frac{19}{24}=\frac{15+14 \sqrt{5}}{24}-\ln (1+\sqrt{5})$
$\ell=14, \mathrm{~m}=150, \mathrm{n}=1$
$\ell+\mathrm{m}+\mathrm{n}=30$

2. The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$ is equal to:
(1) 3133
(2) 633
(3) 6131
(4) 931

Sol. (1)
$=\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$
$=\mathrm{T}_{\mathrm{rH}}={ }^{15} \mathrm{C}_{\mathrm{r}}(2)^{\frac{15-\mathrm{r}}{5}}(5)^{\frac{\mathrm{r}}{3}}$
$r=03,6,9,12,15 \quad \therefore r=0$ or 15
$\mathrm{T}_{1}={ }^{15} \mathrm{C}_{0} 2^{3} \quad \mathrm{~T}_{16}={ }^{15} \mathrm{C}_{15} 5^{5}$
Sum $=8+5^{5}=8+3125=3133$
3. If the domain of the function $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$ is $(\alpha, \beta]$, then $3 \alpha+10 \beta$ is equal to:
(1) 97
(2) 95
(3) 98
(4) 100

Sol. (1)
$y=\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$
(i) $\quad-1 \leq \frac{3 \mathrm{x}-22}{2 \mathrm{x}-19} \leq 1$
(a) $\frac{3 x-22-2 x+19}{2 x-19} \leq 0$
(b) $\frac{3 x-22+2 x+19}{2 x-19} \geq 0$
$=\frac{x-3}{2 x-19} \leq 0$
$=\frac{5 x-41}{2 x-19} \geq 0$
$\therefore \mathrm{x}_{\in}\left[3, \frac{41}{5}\right]$

(ii) $\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}>0$

$$
\begin{aligned}
& =\frac{3 x^{2}-3 x-5 x+5}{x^{2}-5 x+2 x-10}>0 \\
& =\frac{(3 x-5)(x-1)}{(x-5)(x+2)}>0=x_{\in}\left[5, \frac{41}{5}\right]
\end{aligned}
$$

taking common of (i) and (ii)

$$
=\alpha=5, \beta=\frac{41}{5}=3 \alpha+10 \beta=15+82=97
$$

4. Let the point, on the line passing through the points $\mathrm{P}(1,-2,3)$ and $\mathrm{Q}(5,-4,7)$ farther from the origin and at a distance of 9 units from the point P be (α, β, γ). Then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is equal to :
(1) 165
(2) 160
(3) 150
(4) 155

Sol. (4)

$=\frac{x-1}{4}=\frac{y+2}{-2}=\frac{z-3}{4}=\lambda$
Any point $\mathrm{R}(4 \lambda+1,-2 \lambda-2,4 \lambda+3)$
$\mathrm{PR}=\sqrt{(4 \lambda)^{2}+(-2 \lambda)^{2}+(4 \lambda)^{2}}=\sqrt{36 \lambda^{2}}=6|\lambda|$
$=6|\lambda|=9$
$\lambda=\frac{3}{2}, \frac{-3}{2}$
$\therefore \mathrm{P}(7,-5,9) \quad$ or $\quad \mathrm{P}(-5,1,-3)$
This is farther from $(0,0,0)$
$\therefore \alpha^{2}+\beta^{2}+\gamma^{2}=49+25+81=155$
5. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function given by
$f(x)= \begin{cases}\frac{1-\cos 2 x}{x^{2}}, & x<0 \\ \alpha, & x=0, \\ \frac{\beta \sqrt{1-\cos x}}{x}, & x>0\end{cases}$
where $\alpha, \beta \in R$. If f is continous at $x=0$, then $\alpha^{2}+\beta^{2}$ is equal to:
(1) 48
(2) 6
(3) 3
(4) 12

Sol. (4)
$\lim _{x \rightarrow 0^{-}}\left(\frac{1-\cos 2 x}{4 x^{2}}\right) 4=2=\alpha$
$=\lim _{x \rightarrow 0^{+}} \beta \sqrt{\frac{1-\cos 2 x}{x^{2}}}=\frac{\beta}{\sqrt{2}}=2 \Rightarrow \beta=2 \sqrt{2}$
$\alpha^{2}+\beta^{2}=4+8=12$
6. Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to:
(1) 217
(2) 182
(3) 201
(4) 195

Sol. (3)

$y=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}$
$=2 \mathrm{x}^{2}(\mathrm{y}-1)+3 \mathrm{x}(\mathrm{y}+1)+8(\mathrm{y}-1)=0$
$=D \geq 0 \quad y \neq 1$
$=9(y+1)^{2}-64(y-1)^{2} \geq 0$
$=[3(y+1)-8(y-1)][3(y+1)+8(y-1)] \geq 0$
$=(-5 y+11)(11 y-5) \geq 0$
$=(5 y-11)(11 y-5) \leq 0$
$=\mathrm{y}=\left[\frac{5}{11}, \frac{11}{5}\right]$
$=\mathrm{m}+\mathrm{n}=\frac{25+121}{55}=\frac{146}{55}=\mathrm{m}+\mathrm{n}=201$
7. There are 5 points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}$ on the side AB , excluding A and B , of a triangle ABC . Similarly there are 6 points $\mathrm{P}_{6}, \mathrm{P}_{7}, \ldots \mathrm{P}_{11}$ on the side BC and 7 points $\mathrm{P}_{12}, \mathrm{P}_{13}, \ldots \mathrm{P}_{18}$ on the side CA of the triangle. The number of triangles, that can be formed using the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{18}$ as vertices, is:
(1) 751
(2) 771
(3) 776
(4) 796

Sol. (1)

Motílon

No. of triangles $={ }^{18} \mathrm{C}_{3}-{ }^{5} \mathrm{C}_{3}-{ }^{6} \mathrm{C}_{3}-{ }^{7} \mathrm{C}_{3}$

$$
=816-10-20-35=751
$$

8. If 2 and 6 are the roots of the equation $a x^{2}+b x+1=0$, then the quadratic equation, whose roots are $\frac{1}{2 a+b}$ and $\frac{1}{6 a+b}$, is:
(1) $x^{2}+8 x+12=0$
(2) $4 x^{2}+14 x+12=0$
(3) $x^{2}+10 x+16=0$
(4) $2 x^{2}+11 x+12=0$

Sol. (1)
$(x-2)(x-6)=x^{2}-8 x+12$
$\Rightarrow \frac{1}{12} \mathrm{x}^{2}-\frac{2}{3} \mathrm{x}+1=0$
$\mathrm{a}=\frac{1}{12}, \mathrm{~b}=\frac{-2}{3}$
$\frac{1}{2 a+b}=\frac{1}{\frac{1}{6}-\frac{2}{3}}=\frac{1}{\frac{1-4}{6}}=-2$
$\frac{1}{6 a+b}=\frac{1}{\frac{1}{2}-\frac{2}{3}}=\frac{1}{\frac{3-4}{6}}=-6$
$\therefore \mathrm{x}^{2}+8 \mathrm{x}+12=0$
9. Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn A is :
(1) $\frac{7}{18}$
(2) $\frac{5}{16}$
(3) $\frac{4}{17}$
(4) $\frac{5}{18}$

Sol. (4)

7 R 5 B	5 R 7 B	6 R 6 B
	A	B

$P\left(\frac{A}{B}\right)=\frac{\frac{5}{12}}{\frac{5}{12}+\frac{7}{12}+\frac{6}{12}}=\frac{5}{18}$
10. Let α and β be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^{2}+|z|=0, z \in C$. Then $4\left(\alpha^{2}+\beta^{2}\right)$ is equal to:
(1) 2
(2) 4
(3) 8
(4) 6

Sol. (2)

$=(\overline{\mathrm{z}})^{2}+|\mathrm{z}|=0$

Motílon

$=(x-i y)^{2}+\sqrt{x^{2}+y^{2}}=0$
$=x^{2}-y^{2}-2 x y i+\sqrt{x^{2}+y^{2}}=0$
(1) $2 x y=0$
$\therefore \mathrm{x}=0 \quad$ or $\quad \mathrm{y}=0$
(2) $x^{2}-y^{2}+\sqrt{x^{2}+y^{2}}=0$

$$
\begin{aligned}
& \rightarrow \text { if } x=0 \quad-y^{2}+|y|=0 \quad \begin{array}{l}
\rightarrow y=1 \\
\rightarrow
\end{array} \\
& \rightarrow \text { if } y=0 \quad x^{2}+|x|=0 \\
& \rightarrow \text { if } x=0, y=0 \\
& \Rightarrow \alpha=0, \beta=1 \\
& 4\left(\alpha^{2}+\beta^{2}\right)=4
\end{aligned}
$$

11. Let $\alpha, \beta \in \mathrm{R}$. Let the mean and the variance of 6 observations $-3,4,7,-6, \alpha, \beta$ be 2 and 23 , respectively. The mean deviation about the mean of these 6 observations is :
(1) $\frac{14}{3}$
(2) $\frac{13}{3}$
(3) $\frac{16}{3}$
(4) $\frac{11}{3}$

Sol. (2)
Mean $\Rightarrow \alpha+\beta=10$
$\operatorname{Var}\left(\sigma^{2}\right)=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{\mathrm{n}}-(\overline{\mathrm{x}})^{2}=23$
$\therefore \alpha^{2}+\beta^{2}=52$
Solve and get
$\alpha=4, \beta=6$
$\therefore \mathrm{MD}(\overline{\mathrm{x}})=\frac{13}{3}$
12. If the solution $y=y(x)$ of the differential equation $\left(x^{4}+2 x^{3}+3 x^{2}+2 x+2\right) d y-\left(2 x^{2}+2 x+3\right) d x=0$ satisfies $y(-1)=-\frac{\pi}{4}$, then $y(0)$ is equal to:
(1) $-\frac{\pi}{12}$
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{4}$
(4) 0

Sol. (3)
$\int d y=\int \frac{\left(2 x^{2}+2 x+3\right)}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)} d x$
$y=\int \frac{d x}{x^{2}+2 x+2}+\int \frac{d x}{1+x^{2}}$
$y=\tan ^{-1}(x+1)+\tan ^{-1} x+c$
$\mathrm{y}(-1)=-\frac{\pi}{4} \Rightarrow \mathrm{c}=0$
$y(0)=\frac{\pi}{4}$
13. A square is inscribed in the circle $x^{2}+y^{2}-10 x-6 y+30=0$. One side of this square is parallel to $y=x+3$. If $\left(x_{i}, y_{i}\right)$ are the vertices of the square, then $\Sigma\left(x_{i}^{2}+y_{i}^{2}\right)$ is equal to:
(1) 152
(2) 156
(3) 148
(4) 160

Sol. (1)

\perp^{rl} from $(5,3)$ to $\mathrm{x}-\mathrm{y}+\mathrm{c}=0$ is $\sqrt{2}$
$\therefore \mathrm{C}=0$ or $\mathrm{C}=-4$.
2 Lines are $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}-4$.
Solve with circle.
$y=x$
$y=x-4$
(i) $x^{2}-8 x+15=0$
$x=3, y=3$
(ii) $\mathrm{x}^{2}-12 \mathrm{x}+35=0$
$x=5, y=1$
$\mathrm{x}=5, \mathrm{y}=5$
$x=7, y=3$
$\therefore \quad \sum \mathrm{x}_{\mathrm{i}}^{2}+\mathrm{y}_{\mathrm{i}}^{2}=152$
14. Let $f(x)=x^{5}+2 e^{x / 4}$ for all $x \in R$. Consider a function $g(x)$ such that $(g o f)(x)=x$ for all $x \in R$. Then the value of $8 g^{\prime}(2)$ is:
(1) 2
(2) 8
(3) 4
(4) 16

Sol. (4)
$f(x)=x^{5}+2 e^{x / 4}$
g is inverse of f.
$g^{\prime}(y)=\frac{1}{f^{\prime}(x)}=\frac{1}{5 x^{4}+\frac{1}{2} e^{x / 4}}$
$y=2$ at $x=0$
$\therefore \mathrm{g}^{\prime}(2)=\frac{1}{\frac{1}{2}}=2 \Rightarrow 8 \times \mathrm{g}^{\prime}(2)=16$
15. Let $\alpha \in(0, \infty)$ and $A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$. If $\operatorname{det}\left(\operatorname{adj}\left(2 A-A^{T}\right) \cdot \operatorname{adj}\left(A-2 A^{T}\right)\right)=2^{8}$, then $(\operatorname{det}(A))^{2}$ is equal to:
(1) 1
(2) 36
(3) 49
(4) 16

Sol. (4)
$\mathrm{P}=\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}, \mathrm{Q}=2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}$
$\therefore \mathrm{Q}^{\mathrm{T}}=2 \mathrm{~A}^{\mathrm{T}}-\mathrm{A}=-\mathrm{P}$
$\left|\mathrm{Q}^{\mathrm{T}}\right|=|-\mathrm{P}|$
$\Rightarrow|\mathrm{Q}|=-|\mathrm{P}|$
Now |adj P. adjQ|
$\Rightarrow|\operatorname{adj} \mathrm{P}| \cdot|\operatorname{adjQ}|$
$\Rightarrow|\mathrm{P}|^{2} .|\mathrm{Q}|^{2}$
$=|\mathrm{P}|^{4}=2^{8}$
$\therefore|P|=4,|Q|=-4$
$\mathrm{A}-2 \mathrm{~A}^{\top}=\left[\begin{array}{ccc}-1 & 0 & \alpha \\ -3 & 0 & -1 \\ -2 \alpha & -1 & -2\end{array}\right]$
$\left|\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right|=1+3 \alpha=4$
$\alpha=1$
$\therefore|A|=-4$
$|A|^{2}=16$
16. If the system of equations

$$
\begin{aligned}
& x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 \\
& x+(\cos \alpha) y+(\sin \alpha) z=0 \\
& x+(\sin \alpha) y-(\cos \alpha) z=0
\end{aligned}
$$

has a non-trivial solution, then $\alpha \in\left(0, \frac{\pi}{2}\right)$ is equal to:
(1) $\frac{7 \pi}{24}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{11 \pi}{24}$
(4) $\frac{5 \pi}{24}$

Sol. (4)
For non-trivial Solution
$\left|\begin{array}{ccc}1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha\end{array}\right|=0$
On solving
$\sqrt{2} \cos 2 \alpha-\sqrt{2} \sin 2 \alpha=-1$
$\cos \left(2 \alpha+\frac{\pi}{4}\right)=\frac{-1}{2}$
$\alpha=\frac{5 \pi}{24}$.
17. Let $f(x)=\left\{\begin{array}{cc}-2, & -2 \leq x \leq 0 \\ x-2, & 0<x \leq 2\end{array}\right.$ and $h(x)=f(|x|)+|f(x)|$. Then $\int_{-2}^{2} h(x) d x$ is equal to:
(1) 6
(2) 4
(3) 1
(4) 2

Sol. (4)

$$
\begin{aligned}
& \therefore \mathrm{h}(\mathrm{x})=\left\{\begin{array}{cc}
-\mathrm{x} & \mathrm{x}_{\in}[-2,0] \\
0 & \mathrm{x} \in[0,2]
\end{array}\right. \\
& \int_{-2}^{2} \mathrm{~h}(\mathrm{x}) \mathrm{dx}=\int_{-2}^{0}(-\mathrm{x}) \mathrm{dx} \\
& =\left(-\frac{\mathrm{x}^{2}}{2}\right)_{-2}^{0} \\
& =-(-2)=2
\end{aligned}
$$

18. Let a unit vector which makes an angle of 60° with $2 \hat{i}+2 \hat{j}-\hat{k}$ and an angle of 45° with $\hat{i}-\hat{k}$ be $\overrightarrow{\mathrm{C}}$. Then $\overrightarrow{\mathrm{C}}+\left(-\frac{1}{2} \hat{\mathrm{i}}+\frac{1}{3 \sqrt{2}} \hat{\mathrm{j}}-\frac{\sqrt{2}}{3} \hat{\mathrm{k}}\right)$ is:
(1) $\frac{\sqrt{2}}{3} \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{k}}$
(2) $-\frac{\sqrt{2}}{3} \hat{i}+\frac{\sqrt{2}}{3} \hat{j}+\left(\frac{1}{2}+\frac{2 \sqrt{2}}{3}\right) \hat{k}$
(3) $\left(\frac{1}{\sqrt{3}}+\frac{1}{2}\right) \hat{\mathrm{i}}+\left(\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{2}}\right) \hat{\mathrm{j}}+\left(\frac{1}{\sqrt{3}}+\frac{\sqrt{2}}{3}\right) \hat{\mathrm{k}}$
(4) $\frac{\sqrt{2}}{3} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}$

Sol. (1)
Let $\overrightarrow{\mathrm{c}}=\mathrm{p} \hat{\mathrm{i}}+\mathrm{q} \hat{\mathrm{j}}+\mathrm{rk}$
$p^{2}+q^{2}+r^{2}=1$
$\mathrm{p}-\mathrm{r}=1$
$4 p+4 q-2 r=3$
$4(1+r)+4 q-2 r=3$
$2 \mathrm{r}+4 \mathrm{q}=-1$
$4 \mathrm{q}=-(2 \mathrm{r}+1)$
$q=-\frac{(2 r+1)}{4}$
$1+r^{2}+2 r+\frac{4 r^{2}+1+4 r}{16}+r^{2}=1$
$\Rightarrow 36 \mathrm{r}^{2}+17+36 \mathrm{r}=16$
$\Rightarrow 36 r^{2}+36 r+1=0$
$\Rightarrow \mathrm{r} \frac{-36 \pm \sqrt{1296-144}}{2 \times 36}$
$\Rightarrow \mathrm{r}=\frac{-36 \pm 24 \sqrt{2}}{2 \times 36}$
$\Rightarrow \mathrm{r}=\frac{-6 \pm 4 \sqrt{2}}{2 \times 6}$
$\Rightarrow \mathrm{r}=-\frac{1}{2} \pm \frac{\sqrt{2}}{3}$
$\mathrm{r}=-\frac{1}{2}+\frac{\sqrt{2}}{3}$
$\mathrm{p}=\frac{1}{2}+\frac{\sqrt{2}}{3}$
$\mathrm{q}=-\frac{1}{4}\left(\frac{2 \sqrt{2}}{3}\right)$
$\mathrm{q}=\frac{-1}{3 \sqrt{2}}$
$\overrightarrow{\mathrm{c}}=\left(\frac{1}{2}+\frac{\sqrt{2}}{3}\right) \hat{\mathrm{i}}-\frac{1}{3 \sqrt{2}} \hat{\mathrm{j}}+\left(-\frac{1}{2}+\frac{\sqrt{2}}{5}\right) \mathrm{k}$
$\frac{\sqrt{2}}{3} \hat{i}+0 \hat{j}-\frac{1}{2} \hat{k}$
19. Let the first three terms $2, p$ and q, with $q \neq 2$, of a G.P. be respectively the $7^{\text {th }}, 8^{\text {th }}$ and $13^{\text {th }}$ terms of an A.P. If the $5^{\text {th }}$ term of the G.P. is the $\mathrm{n}^{\text {th }}$ term of the A.P., then n is equal to:
(1) 169
(2) 163
(3) 177
(4) 151

Sol. (2)

$2, \mathrm{p}=2 \mathrm{r}, \mathrm{q}=2 \mathrm{r}^{2}$
$\left.\left.\begin{array}{rr}a+6 d=2 \\ a+7 d=2 r \\ a+12 d=2 r^{2}\end{array}\right] \quad \begin{array}{r}d=2(r-1) \\ 5 d=2 r(r-1)\end{array}\right]$
$\frac{1}{5}=\frac{1}{r}$
$\mathrm{r}=5, \therefore \mathrm{~d}=8$
$a=-46$
$\mathrm{p}=10, \mathrm{q}=50$

$$
\begin{gathered}
\mathrm{T}_{5}=2[\mathrm{r}]^{4}=2\left[5^{4}\right]=1250 .=\mathrm{a}+(\mathrm{n}-1) 8 \\
=1250=-46+(\mathrm{n}-1) 8 \\
\mathrm{n}=163
\end{gathered}
$$

20. The vertices of a triangle are $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ and $\mathrm{C}(3,-1)$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
(1) $x-y-(2+\sqrt{2})=0$
(2) $x+y-(2-\sqrt{2})=0$
(3) $-x+y-(2-\sqrt{2})=0$
(4) $x+y+(2-\sqrt{2})=0$

Sol. (2)

$\mathrm{AB}: \mathrm{y}-2=\frac{1}{1}(\mathrm{x}+2)$
$x-y-4=0 . x-y+c=0$
$\left|\frac{c+4}{\sqrt{2}}\right|=1$
$\mathrm{C}=\sqrt{2}-4,-\sqrt{2}-4$
BC: $\mathrm{y}+1=\frac{3}{-5}(\mathrm{x}-3)$
$-5 y-5=3 x-9$
$3 x+5 y=4$
$\left|\frac{c+4}{\sqrt{34}}\right|=1$
AC: $y-3=-1(x+1)$
$x+y-2$
$\left|\frac{c+2}{\sqrt{2}}\right|=1$
$C=\sqrt{2}-2,-\sqrt{2}-2$
Nearest: $\mathrm{x}+\mathrm{y}-2+\sqrt{2}=0$
21. Let A be a square matrix of order 2 such that $|A|=2$ and the sum of its diagonal elements is -3 . If the points (x, y) satisfying $A^{2}+x A+y I=O$ lie on a hyperbola, whose transverse axis is parallel to the x-axis, eccentricity is e and the length of the latus rectum is ℓ, then $\mathrm{e}^{4}+\ell^{4}$ is equal to \qquad ;

Sol. Bonus

22. If the shortest distance between the lines $\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$ and $\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$ is $\frac{38}{3 \sqrt{5}}$, and $\int_{0}^{k}\left[x^{2}\right] d x=\alpha-\sqrt{\alpha}$, where $[x]$ denotes the greatest integer function, then $6 \alpha^{3}$ is equal to \qquad .

Sol. 48

$$
\begin{aligned}
& \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
2 & 3 & 4 \\
1 & -3 & 2
\end{array}\right| \\
& =\hat{\mathrm{i}}(18)-\hat{\mathrm{j}}(0)+\hat{\mathrm{k}}(-9) \\
& =18 \hat{\mathrm{i}}-9 \hat{\mathrm{k}} \\
& =(2,0,-1)=\mathrm{dr's} \\
& \mathrm{~A}(-2,-3,5) \mathrm{B}(3,2,-4) \\
& \mathrm{S}_{\mathrm{d}}=\left|\frac{(5,5,-9) \cdot(2,0,-1)}{\sqrt{5}}\right|=\frac{10+9}{\sqrt{5}}=\frac{19}{\sqrt{5}}=\frac{38}{3 \sqrt{5}} \cdot \mathrm{~K} \\
& \mathrm{~K}=\frac{3}{2} \\
& \therefore \int_{0}^{\frac{3}{2}}\left[\mathrm{x}^{2}\right] \mathrm{dx}=\int_{0}^{1} 0 \mathrm{dx}+\int_{1}^{\sqrt{2}} 1 \mathrm{dx}+\int_{\sqrt{2}}^{\frac{3}{2}} 2 \mathrm{dx} \\
& =\sqrt{2}-1+2\left(\frac{3}{2}-\sqrt{2}\right) \\
& =\sqrt{2}-1+3-2 \sqrt{2} \\
& =2-\sqrt{2}
\end{aligned}
$$

23. If $\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{m \sqrt{5}}{n(2 n)^{2 / 3}}$, where $\operatorname{gcd}(m, n)=1$, then $8 m+12 n$ is equal to

Sol. 100

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{(5 x+1)^{\frac{1}{3}}-(x+5)^{\frac{1}{3}}}{(2 x+3)^{\frac{1}{2}}-(x+4)^{\frac{1}{2}}}=\frac{\mathrm{m} \sqrt{3}}{\mathrm{n}(2 \mathrm{n})^{2 / 3}} \\
& \lim _{x \rightarrow 1} \frac{\frac{1}{3}(5 \mathrm{x}+1)^{-\frac{2}{3}} \cdot 5-\frac{1}{3}(\mathrm{x}+5)^{-\frac{2}{3}}}{\frac{1}{2}(2 \mathrm{x}+3)^{-\frac{1}{2}} \cdot 2-\frac{1}{2}(\mathrm{x}+4)^{-\frac{1}{2}}} \\
& =\frac{\frac{5}{3}(6)^{-\frac{2}{3}}-\frac{1}{3}(6)^{-\frac{2}{3}}}{(5)^{-\frac{1}{2}}-\frac{1}{2}(5)^{-\frac{1}{2}}} \\
& =\frac{(6)^{-\frac{2}{3}}\left(\frac{4}{3}\right)}{\frac{1}{2}(5)^{-\frac{1}{2}}} \\
& =\frac{8}{3} \cdot \frac{(5)^{\frac{1}{2}}}{(2 \cdot 3)^{2 / 3}} \\
& =\frac{8 \sqrt{5}}{\mathrm{~m}}=\frac{\mathrm{m} \sqrt{5}}{\mathrm{n}(2 \mathrm{n})^{\frac{2}{3}}} \\
& \Rightarrow \mathrm{~m}=8 \cdot \mathrm{~m}=3 \\
& 8 \mathrm{~m}+12 \mathrm{n}=8 \times 8+12 \times 3 \\
& =64+36=100
\end{aligned}
$$

24. If $\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} x}{1+\sin x \cos x} d x=\frac{1}{a} \log _{e}\left(\frac{a}{3}\right)+\frac{\pi}{b \sqrt{3}}$, where $a, b \in N$, then $a+b$ is equal to \qquad -.
Sol. 8

$$
\begin{array}{ll}
\mathrm{I}=\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} \mathrm{x}}{1+\sin \mathrm{x} \cos \mathrm{x}} \mathrm{dx} & \text { divide by } \cos ^{2} \mathrm{x} \\
\mathrm{I}=\int_{0}^{\frac{\pi}{4}} \frac{\tan ^{2} \mathrm{x}}{\sec ^{2} \mathrm{x}+\tan \mathrm{x}} \mathrm{dx} & ; \tan \mathrm{x}=\mathrm{t} \\
\mathrm{I}=\int_{0}^{1} \frac{\mathrm{t}^{2}}{\left(\mathrm{t}^{2}+\mathrm{t}+1\right)} \frac{\mathrm{dt}}{\left(1+\mathrm{t}^{2}\right)} & ; \sec ^{2} \mathrm{xdx}=\mathrm{dt}
\end{array}
$$

$I=\frac{1}{2} \int_{0}^{1} \frac{\left(\mathrm{t}^{2}+1\right)+\left(\mathrm{t}^{2}-1\right)}{\left(\mathrm{t}^{2}+1\right)\left(\mathrm{t}^{2}+1\right)} d t$
$1=\frac{1}{2} \int_{0}^{1}\left(\frac{1}{t^{2}+t+1}+\frac{t^{2}-1}{\left(t^{2}+1\right)(t+t+1)}\right) d t$
$I=\frac{1}{2} \int_{0}^{1} \frac{1}{t^{2}+t+1} d t+\frac{1}{2} \int_{0}^{1} \frac{\left(1-\frac{1}{t^{2}}\right)}{\left(t+\frac{1}{t}\right)\left(t+\frac{1}{t}+1\right)} d t$

\downarrow	\downarrow
I_{1}	I_{2}

$\mathrm{I}_{1}=\int_{0}^{1} \frac{1}{\mathrm{t}^{2}+\mathrm{t}+1} \mathrm{dt}$
$I_{1}=\int_{0}^{1} \frac{1}{\left(t+\frac{1}{2}\right)^{2}+\frac{3}{4}} d t=\int_{0}^{1} \frac{1}{\left(t+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d t$
$\mathrm{I}_{1}=\left[\frac{2 \sqrt{3}}{3} \tan ^{-1}\left(\frac{2 \mathrm{t}+1}{\sqrt{3}}\right)\right]_{0}^{1}$
$\mathrm{I}_{1}=\frac{2}{\sqrt{3}}\left[\frac{\pi}{3}-\frac{\pi}{6}\right]=\frac{\pi}{3 \sqrt{3}}$
$\mathrm{I}_{2}=\int_{\infty}^{2} \frac{\mathrm{du}}{\mathrm{u}(\mathrm{u}+1)}=[\log \mathrm{u}-\log (\mathrm{u}+1)]_{\infty}^{2}$
$\left.=\log \left(\frac{\mathrm{u}}{\mathrm{u}+1}\right)\right]_{\infty}^{2}$
$\mathrm{I}_{2}=\log \left(\frac{2}{3}\right)$
$I=\frac{1}{2} \cdot \frac{\pi}{3 \sqrt{3}}+\frac{1}{2} \log \frac{2}{3}$
$\mathrm{a}=2 ; \mathrm{b}=6$
$a+b=8$
25. Let ABC be a triangle of area $15 \sqrt{2}$ and the vectors $\overrightarrow{\mathrm{AB}}=\hat{\mathrm{i}}+2 \hat{\mathbf{j}}-7 \hat{\mathrm{k}}, \overrightarrow{\mathrm{BC}}=a \hat{i}+b \hat{j}+c \hat{k}$ and $\overrightarrow{\mathrm{AC}}=6 \hat{\mathrm{i}}+\mathrm{dj}-2 \hat{\mathrm{k}}, \mathrm{d}>0$. Then the square of the length of the largest side of the triangle ABC is \qquad _.

Sol. 54

$\frac{1}{2}\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 1 & 2 & -7 \\ 6 & \mathrm{~d} & -2\end{array}\right|= \pm 30 \sqrt{2}$
$\hat{\mathrm{i}}(-4+7 \mathrm{~d})-\hat{\mathrm{j}}(-2+42)+\hat{\mathrm{k}}(\mathrm{d}-12)= \pm 30 \sqrt{2}$
$\Rightarrow(7 \mathrm{~d}-4)^{2}+40^{2}+(\mathrm{d}-12)^{2}=1800$
$49 \mathrm{~d}^{2}+16-56 \mathrm{~d}+1600+\mathrm{d}^{2}+144-24 \mathrm{~d}=1800$
$50 d^{2}-80 d-40=0$
$5 d^{2}-8 d-4=0$
$5 \mathrm{~d}^{2}-10 \mathrm{~d}+2 \mathrm{~d}-4=0$
$(5 d+2)(d-2)=0$
$\mathrm{d}=2$
$\mathrm{AB}=\sqrt{54}$
$\mathrm{AC}=\sqrt{36+4+4}=\sqrt{44}$
$\mathrm{BC}=\sqrt{25+0+25}$
26. Let $\mathrm{a}=1+\frac{{ }^{2} \mathrm{C}_{2}}{3!}+\frac{{ }^{3} \mathrm{C}_{2}}{4!}+\frac{{ }^{4} \mathrm{C}_{2}}{5!}+\ldots, \mathrm{b}=1+\frac{{ }^{1} \mathrm{C}_{0}+{ }^{1} \mathrm{C}_{1}}{1!}+\frac{{ }^{2} \mathrm{C}_{0}+{ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{2}}{2!}+\frac{{ }^{3} \mathrm{C}_{0}+{ }^{3} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{3}}{3!}+\ldots$ Then $\frac{2 b}{a^{2}}$ is equal to \qquad .
Sol. 8
$a=1+\frac{2 c_{2}}{\lfloor 3}+\frac{3 c_{2}}{\underline{4}}+\frac{4 c_{2}}{\underline{5}}+\cdots$
$\mathrm{a}=1+\sum_{\mathrm{r}=2}^{\infty} \frac{{ }^{\mathrm{r}} \mathrm{C}_{2}}{(\mathrm{r}+1)}$
$\mathrm{a}=1+\sum_{\mathrm{r}=2}^{\infty} \frac{\mathrm{r}(\mathrm{r}-1)}{2 \underline{\mathrm{r}+1}}$
$\mathrm{a}=1+\frac{1}{2} \sum_{\mathrm{r}=2}^{\infty}\left[\frac{\mathrm{r}(\mathrm{r}+1)-2 \mathrm{r}}{\underline{(\mathrm{r}+1)}}\right.$
$\mathrm{a}=1+\frac{1}{2}\left[\sum_{\mathrm{r}=2}^{\infty} \frac{1}{\underline{\mathrm{r}-1}}-\frac{2}{\underline{\mathrm{r}}}+\frac{2}{\boxed{\mathrm{r}+1}}\right]$
$a=1+\frac{1}{2}\left[(e-1)-2(e-2)+2\left(e-2-\frac{1}{2}\right)\right]$
$\mathrm{a}=1+\frac{1}{2}[\mathrm{e}-2]=\frac{\mathrm{e}}{2}$
$\mathrm{b}=1+\frac{{ }^{1} \mathrm{C}_{0}+{ }^{1} \mathrm{C}_{1}}{1!}+\frac{{ }^{2} \mathrm{C}_{0}+{ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{2}}{2!}+\frac{{ }^{3} \mathrm{C}_{0}+{ }^{3} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{3}}{3!}+\ldots$
$b=e^{2}$
Now, $=\frac{2 \mathrm{~b}}{\mathrm{a}^{2}}=\frac{2 \times \mathrm{e}^{2}}{\mathrm{e}^{2}} \times 4=8$
27. Let A be 3×3 matrix of non-negative real elements such that $\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then the maximum value of $\operatorname{det}(\mathrm{A})$ is \qquad .
Sol. 27
$\mathrm{A} . \mathrm{B}=3 \mathrm{~B}$
($\mathrm{A}-3 \mathrm{I}$). $\mathrm{B}=0$
Now $|\mathrm{A}-3 \mathrm{I}|=0$
for maximum value of $|\mathrm{A}|$
$|\mathrm{A}|=|3 \mathrm{I}|$
$\therefore|\mathrm{A}|_{\max }=27$
28. Let the length of the focal chord PQ of the parabola $\mathrm{y}^{2}=12 \mathrm{x}$ be 15 units. If the distance of PQ from the origin is p , then $10 \mathrm{p}^{2}$ is equal to \qquad -.
Sol. 72

$|\mathrm{PQ}|=15$
$4 \mathrm{a} \operatorname{cosec}^{2} \theta=15$
$\operatorname{cosec}^{2} \theta=\frac{15}{12}$
$\mathrm{p}=3 \sin \theta$
$10 p^{2}=9 \times \frac{1}{\operatorname{cosec}^{2} \theta} \times 10$
$10 \mathrm{p}^{2}=9 \times \frac{12}{15} \times 10=72$
29. In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let m and n respectively be the least and the most number of students who studied all the three subjects. Then $m+n$ is equal to \qquad _.
Sol. 45

$165+\mathrm{x}=210$
$x=45 \Rightarrow x=30=m$

$205+\mathrm{x}=220$
$\mathrm{x}=15=\mathrm{n}$
$\Rightarrow \mathrm{m}+\mathrm{n}=45$
30. Let the solution $\mathrm{y}=\mathrm{y}(\mathrm{x})$ of the differential equation $\frac{d y}{d x}-\mathrm{y}=1+4 \sin \mathrm{x}$ satisfy $\mathrm{y}(\pi)=1$. Then $\mathrm{y}\left(\frac{\pi}{2}\right)+10$ is equal to \qquad .
Sol. 7
$\frac{d y}{d x}-y=1+4 \sin x$
I.F. $=\mathrm{e}^{\int-1 \mathrm{dx}}=\mathrm{e}^{-\mathrm{x}}$
$\mathrm{ye}^{-\mathrm{x}}=\int\left(\mathrm{e}^{-\mathrm{x}}\right)(1+4 \sin \mathrm{x}) \mathrm{dx}$
$=y \cdot e^{-x}=e^{-x}+4 \int e^{-x} \sin x d x+C$
$\int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x)$
$\Rightarrow \mathrm{ye}^{-\mathrm{x}}=-\mathrm{e}^{-\mathrm{x}}-\frac{4}{2} \mathrm{e}^{-\mathrm{x}}(\sin \mathrm{x}+\cos \mathrm{x})+\mathrm{C}$
$\because y(\pi)=1$
$\Rightarrow \mathrm{e}^{-\pi}=-\mathrm{e}^{-\pi}+2 \mathrm{e}^{-\pi}+\mathrm{C}$
$\Rightarrow \mathrm{C}=0$
$\Rightarrow \mathrm{y}^{-\mathrm{x}}=-\mathrm{e}^{-\mathrm{x}}-2 \mathrm{e}^{-\mathrm{x}}(\sin \mathrm{x}+\cos \mathrm{x})$
$\Rightarrow \mathrm{y}=-1-2(\sin \mathrm{x}+\cos \mathrm{x})$
$\Rightarrow \mathrm{y}\left(\frac{\pi}{2}\right)+10=-1-2(1)+10=7$

GIVE YOUR JEE ADVANCED 2024 PREPRATION A FINAL CHECK

95\%ile to 97.99\%ile

Offline : 50\% scholarship
Online : 100\% scholarship

98\%ile to 98.99\%ile
Offline : 100% scholarship
Online : 100\% scholarship

99\%ile or ABOVE VICTORY
 BATCH

99.99\%ile will be provided with free residential facilities (Hostel+Food)

Continuing to keep the pledge of imparting education for the last 17 Years

$65136+$ wimem 12142 3258417875

Most Promising RANKS
Produced by MOTION Faculties

NEET / AlIMS

JEE MAIN+ADVANCED

Nation's Best SELECTION
 Percentage (\%) Ratio

Student Qualified in NEET
(2023)

6492/7084 = 91.64\% (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANCED
(2023)
$2747 / 5182=53.01 \%$
(2022)

1756/4818 = 36.45\%

Student Qualified in JEE MAIN
(2024-First Attemp)
6495/10592 = 61.31\%
(2023)
$5993 / 8497=70.53 \%$
(2022)

4818/6653 $=72.41 \%$

