# JEE MAIN 20244 घssemz <br> Paper with Solution 

PHYSICS \| 09 ${ }^{\text {th }}$ April $2024 ~ \_~ S h i f t-1 ~$


## Motílon

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

## CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP


Scan Code for Demo Class

## SECTION - A

31. A light emitting diode (LED) is fabricated using GaAs semiconducting material whose band gap is 1.42 eV . The wavelength of light emitted from the LED is :
(1) 875 nm
(2) 1400 nm
(3) 1243 nm
(4) 650 nm

Sol. 1

$$
\begin{aligned}
& \because \mathrm{E}_{(\mathrm{ev})}=\frac{\mathrm{hc}}{\lambda\left(\mathrm{~A}^{\mathrm{o}}\right)} \\
& \lambda\left(\mathrm{A}^{\mathrm{o}}\right)=\frac{\mathrm{hC}}{\mathrm{E}}=\frac{12430}{1.42}=8753 \mathrm{~A}^{\mathrm{o}}=875 \mathrm{~nm}
\end{aligned}
$$

32. A heavy iron bar, of weight $W$ is having its one end on the ground and the other on the shoulder of a person. The bar makes an angle $\theta$ with the horizontal. The weight experienced by the person is :
(1) $\frac{W}{2}$
(2) $\mathrm{W} \sin \theta$
(3) W
(4) $\mathrm{W} \cos \theta$

Sol. 1

$\tau_{0}=0$
$\mathrm{W} \times \frac{\ell}{2} \cos \theta=\mathrm{N}_{2} \times \ell \cos \theta$
$\mathrm{N}_{2}=\frac{\mathrm{W}}{2}$
33. Given below are two statements :

Statement (I): When currents vary with time, Newton's third law is valid only if momentum carried by the electromagnetic field is taken into account.
Statement (II) : Ampere's circuital law does not depend on Biot-Savart's law.
In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are false
(2) Statement I is false but Statement II is true
(3) Both Statement I and Statement II are true
(4) Statement I is true but Statement II is false

Sol. 4
Statement $\mathrm{I}^{\mathrm{st}}$ is true
Statement IInd is false as Ampere's law depends on Biot Savart's law.
34. A proton, an electron and an alpha particle have the same energies. Their de-Broglie wavelengths will be compared as :
(1) $\lambda_{p}>\lambda_{e}>\lambda_{a}$
(2) $\lambda_{\alpha}<\lambda_{p}<\lambda_{e}$
(3) $\lambda_{p}<\lambda_{e}<\lambda_{\alpha}$
(4) $\lambda_{e}>\lambda_{\alpha}>\lambda_{p}$

Sol. 2
$\lambda=\frac{\mathrm{h}}{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}$
$K E$ is same for all.
$\lambda \times \frac{1}{\sqrt{\mathrm{~m}}}$
$\mathrm{m}_{\mathrm{e}}<\mathrm{m}_{\mathrm{p}}<\mathrm{m}_{\alpha}$
$\lambda_{\mathrm{e}}>\lambda_{\mathrm{p}}>\lambda_{\alpha}$
35. A galvanmeter has a coil of resistance $200 \Omega$ with a full scale deflection at $20 \mu \mathrm{~A}$. The value of resistance to be added to use it as an ammeter of range $(0-20) \mathrm{mA}$ is :
(1) $0.50 \Omega$
(2) $0.40 \Omega$
(3) $0.20 \Omega$
(4) $0.10 \Omega$

Sol. 3
For Ammeter
$i=i_{g}\left[1+\frac{R_{g}}{S}\right]$
$20 \times 10^{-3}=20 \times 10^{-6}\left[1+\frac{200}{S}\right]$
$\frac{200}{\mathrm{~S}}=999$
$\mathrm{S}=\frac{200}{999}=0.20 \Omega$
36. A bulb and a capacitor are connected in series across an AC supply. A dielectric is then placed between the plates of the capacitor. The glow of the bulb :
(1) remains same
(2) decrease
(3) increase
(4) becomes zero

Sol. 3
As dielectric is placed, capacitance will increase.
$\mathrm{X}_{\mathrm{C}}=\frac{1}{\mathrm{C} \omega}$
So capacitive Reactance decreases. So impedance of circuit decreases. Hence current increases.
So power increases. So glow of the bulb increases.
37. A sphere of relative density $\sigma$ and diameter $D$ has concentric cavity of diameter $d$. The ratio of $\frac{D}{d}$, if it just floats on water in a tank is :
(1) $\left(\frac{\sigma-1}{\sigma}\right)^{1 / 3}$
(2) $\left(\frac{\sigma}{\sigma-1}\right)^{1 / 3}$
(3) $\left(\frac{\sigma-2}{\sigma+2}\right)^{1 / 3}$
(4) $\left(\frac{\sigma+1}{\sigma-1}\right)^{1 / 3}$

## Sol. 2

It just floats on water in a tank means.
$\mathrm{F}_{\mathrm{b}}=\mathrm{mg} \quad\left[\rho_{\text {sphere }}=\sigma \rho_{\mathrm{w}}\right]$
$\rho_{w} g \frac{4}{3} \pi \frac{D^{3}}{8}=\sigma \rho_{w} g \frac{4 \pi}{3 \times 8}\left[D^{3}-d^{3}\right]$
on solving
$\frac{\mathrm{D}}{\mathrm{d}}=\left(\frac{\sigma}{\sigma-1}\right)^{1 / 3}$
38. The dimensional formula of latent heat is :
(1) $\left[\mathrm{MLT}^{-2}\right]$
(2) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(3) $\left[\mathrm{M}^{\circ} \mathrm{LT}^{-2}\right]$
(4) $\left[\mathrm{M}^{\circ} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$

Sol. 4
$\mathrm{Q}=\mathrm{mxL}$.
$[\mathrm{L}]=\left[\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{M}}\right]=\left[\mathrm{M}^{\mathrm{o}} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
39. An astronaut takes a ball of mass $m$ from earth to space. He throws the ball into a circular orbit about earth at an altitude of 318.5 km . From earth's surface to the orbit, the change in total mechanical energy of the ball is $x \frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}$. The value of $x$ is (take $\mathrm{R}_{\mathrm{e}}=6370 \mathrm{~km}$ ):
(1) 11
(2) 10
(3) 9
(4) 12

Sol. 1
$\because$ Total mechanical energy $=\frac{\mathrm{PE}}{2} \quad\left(\because \frac{\mathrm{R}_{\mathrm{e}}}{20}=318.5\right)$
ME on surface of earth $=\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{R}_{\mathrm{e}}}($ KE on surface $=0)$
ME at an altitude $=\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{2\left(\mathrm{R}_{\mathrm{e}}+\frac{\mathrm{R}_{\mathrm{e}}}{20}\right)}=-\frac{20 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{2 \times 21 \mathrm{R}_{\mathrm{e}}}$
$=\frac{-10 \mathrm{Gm}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}$
Change in Total M.E. $=\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}$
$=-\frac{10 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}+\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\operatorname{Re}}$
$=\frac{-10 \mathrm{GM}_{\mathrm{e}} \mathrm{m}+21 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}=\frac{11 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}$
$\mathrm{x}=11$
40. The volume of an ideal gas $(\gamma=1.5)$ is changed adiabatically from 5 litres to 4 litres. The ratio of initial pressure to final pressure is :
(1) $\frac{4}{5}$
(2) $\frac{8}{5 \sqrt{5}}$
(3) $\frac{16}{25}$
(4) $\frac{2}{\sqrt{5}}$

Sol. 2
$\because$ For adiabatic process
$\mathrm{Pv}^{\gamma}=\mathrm{k}$
$P_{1} v_{1}^{3 / 2}=P_{2} V_{2}^{3 / 2}$
$\mathrm{P}_{1} \times(5)^{3 / 2}=\mathrm{P}_{2} \times(4)^{3 / 2}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{4}{5}\right)^{3 / 2}=\frac{(2)^{3}}{(125)^{1 / 2}}=\frac{8}{5 \sqrt{5}}$
41. Given below are two statements :

Statement (I): When an object is placed at the centre of curvature of a concave lens, image is formed at the centre of curvature of the lens on the other side.
Statement (II) : Concave lens always forms a virtual and erect image.
In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are true
(2) Both Statement I and Statement II are false
(3) Statement I is false but Statement II is true
(4) Statement I is true but Statement II is false

Sol. 3
Statement - I $\rightarrow$ False. (Image is formed on same side not on other side).
Statement - II $\rightarrow$ True (As object is real it's virtual \& erect image is formed)
42. A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure. If the area of each stair is $\frac{A}{3}$ and the height is $d$, the capacitance of the arrangement is :

(1) $\frac{18 \epsilon_{o} A}{11 d}$
(2) $\frac{11 \epsilon_{o} A}{20 d}$
(3) $\frac{13 \in_{o} A}{17 d}$
(4) $\frac{11 \epsilon_{o} A}{18 d}$

Sol. 4
All capacitors are in parallel.
$\mathrm{C}_{\text {eq }}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$=\frac{\in_{0} \mathrm{~A}}{3 \times \mathrm{d}}+\frac{\in_{0} \mathrm{~A}}{3 \times 2 \mathrm{~d}}+\frac{\in_{0} \mathrm{~A}}{3 \times 3 \mathrm{~d}}$
$=\frac{6 \epsilon_{0} A+3 \epsilon_{0} A+2 \epsilon_{0} A}{18 d}=\frac{11 \epsilon_{0} A}{18 d}$
43. One main scale division of a vernier caliper is equal to $m$ units. If $n^{\text {th }}$ division of main scale coincides with $(\mathrm{n}+1)^{\mathrm{th}}$ division of vernier scale, the least count of the vernier caliper is :
(1) $\frac{1}{(n+1)}$
(2) $\frac{n}{(n+1)}$
(3) $\frac{m}{n(n+1)}$
(4) $\frac{m}{(n+1)}$

Sol. 4
1MSD - m units
$(\mathrm{n}+1) \mathrm{VSD}=\mathrm{n}$ MSD
$1 \mathrm{VSD}=\left(\frac{\mathrm{n}}{\mathrm{n}+1}\right) \mathrm{MSD}$
$=\frac{\mathrm{n}}{(\mathrm{n}+1)} \times \mathrm{m}$ units
L.C. $=1 \mathrm{MSD}-1 \mathrm{VSD}=m-\frac{\mathrm{nm}}{\mathrm{n}+1}$
$=\frac{\mathrm{mn}+\mathrm{m}-\mathrm{nm}}{\mathrm{n}+1}=\left(\frac{\mathrm{m}}{\mathrm{n}+1}\right)$ units
44. The energy equivalent of 1 g of substance is :
(1) $11.2 \times 10^{24} \mathrm{MeV}$
(2) $5.6 \times 10^{26} \mathrm{MeV}$
(3) 5.6 eV
(4) $5.6 \times 10^{12} \mathrm{MeV}$

## Sol. 2

$\mathrm{E}=10^{-3} \times 9 \times 10^{16} \mathrm{~J} \quad\left(\because \mathrm{E}=\mathrm{MC}^{2}\right)$
$\mathrm{E}=9 \times 10^{13} \mathrm{~J}$
$1 \mathrm{~J}=\frac{1}{1.6 \times 10^{-19}} \mathrm{ev}$
$\mathrm{E}=9 \times 10^{13} \times \frac{1}{1.6 \times 10^{-19}} \mathrm{ev}=5.6 \times 10^{26} \mathrm{Mev}$
45. A plane EM wave is propagating along $x$ direction. It has a wavelength of 4 mm . If electric field is in $y$ direction with the maximum magnitude of $60 \mathrm{Vm}^{-1}$, the equation for magnetic field is :
(1) $\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{2} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \mathrm{kT}$
(2) $\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{2}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \mathrm{kT}$
(3) $\mathrm{B}_{\mathrm{x}}=60 \sin \left[\frac{\pi}{2}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{i} T}$
(4) $\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{2}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \mathrm{kT}$

Sol. 1
$\lambda=4 \mathrm{~mm}=4 \times 10^{-3} \mathrm{~m}$
$\mathrm{K}=\frac{2 \pi}{4 \times 10^{-3}}=\frac{\pi}{2} \times 10^{3} \cdot \mathrm{~m}^{-1}$
$\mathrm{w}=v \times \mathrm{K}=3 \times 10^{8} \times \frac{\pi}{2} \times 10^{3}=\frac{3 \pi}{2} \times 10^{11}$
$\hat{\mathrm{E}} \times \hat{\mathrm{B}}=\hat{\mathrm{C}} \& \mathrm{~B}_{0}=\frac{\mathrm{E}_{0}}{\mathrm{C}}=2 \times 10^{-7} \mathrm{~T}$
$\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{2} \times 10^{3}\left[\mathrm{x}-3 \times 10^{8} \mathrm{t}\right]\right] \hat{\mathrm{k} T}$
46. A light unstretchable string passing over a smooth light pulley connects two blocks of masses $m_{1}$ and $m_{2}$. If the acceleration of the system is $\frac{g}{8}$, then the ratio of the masses $\frac{m_{2}}{m_{1}}$ is :
(1) $4: 3$
(2) $5: 3$
(3) $8: 1$
(4) $9: 7$

Sol. 4
$\mathrm{a}_{\mathrm{c}}=\frac{\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{g}}{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}$
$\frac{\not \&}{8}=\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) \notin$
$\frac{1}{8}=\left(\frac{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}-1}{\frac{\mathrm{~m}_{2}}{\mathrm{~m}_{1}}+1}\right)$
$\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}+1=8 \frac{\mathrm{~m}_{2}}{\mathrm{~m}_{1}}-8 \Rightarrow \frac{7 \mathrm{~m}_{2}}{\mathrm{~m}_{1}}=9$
$\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{9}{7}$
47. A particle of mass moves on a straight line with its velocity increasing with distance according to the equation $v=\alpha \sqrt{x}$, where $\alpha$ is a constant. The total work done by all the forces applied on the particle during its displacement from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{d}$, will be :
(1) $\frac{m}{2 \alpha^{2} d}$
(2) $\frac{m d}{2 \alpha^{2}}$
(3) $\frac{m \alpha^{2} d}{2}$
(4) $2 m \alpha^{2} d$

Sol. 3
$W D=\int \vec{F} \cdot \vec{d} x$
$\mathrm{a}=\frac{v \mathrm{dv}}{\mathrm{dx}}=\alpha \sqrt{\mathrm{x}} \times \frac{\alpha 1}{2 \sqrt{\mathrm{x}}}=\frac{\alpha^{2}}{2}$
$\mathrm{WD}=\int_{0}^{\mathrm{d}} \frac{\mathrm{m} \alpha^{2}}{2} \cdot \mathrm{dx}=\frac{\mathrm{m} \alpha^{2} \mathrm{~d}}{2}$
48. A particle moving in a straight line covers half the distance with speed $6 \mathrm{~m} / \mathrm{s}$. The other half is covered in two equal time intervals with speeds $9 \mathrm{~m} / \mathrm{s}$ and $15 \mathrm{~m} / \mathrm{s}$ respectively. The average speed of the particle during the motion is :
(1) $8.8 \mathrm{~m} / \mathrm{s}$
(2) $8 \mathrm{~m} / \mathrm{s}$
(3) $9.2 \mathrm{~m} / \mathrm{s}$
(4) $10 \mathrm{~m} / \mathrm{s}$

Sol. 2

$S_{1}+S_{2}=S=24 t_{2}$
$t_{2}=\frac{S}{24}$
average speed $=\frac{2 \mathrm{~S}}{\mathrm{t}_{1}+2 \mathrm{t}_{2}}=\frac{2 \mathrm{~S}}{\frac{\mathrm{~S}}{6}+\frac{\mathrm{S}}{12}}=8 \mathrm{~m} / \mathrm{s}$
49. A sample of 1 mole gas at temperature T is adiabatically expanded to double its volume. If adiabatic constant for the gas is $\gamma=\frac{3}{2}$, then the work done by the gas in the process is:
(1) $\mathrm{RT}[2-\sqrt{2}]$
(2) $\mathrm{RT}[2+\sqrt{2}]$
(3) $\frac{\mathrm{T}}{\mathrm{R}}[2+\sqrt{2}]$
(4) $\frac{R}{T}[2-\sqrt{2}]$

## Sol. 1

WD by gas in adiabatic process $=\frac{\mathrm{P}_{2} \mathrm{v}_{2}-\mathrm{P}_{1} \mathrm{v}_{1}}{1-\gamma}$
OR
$\frac{\mathrm{nR}\left[\mathrm{T}_{2}-\mathrm{T}_{1}\right]}{1-\gamma}$
$\mathrm{T}_{1} \mathrm{v}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{v}_{2}^{\gamma-1}$
$\mathrm{T} \times \mathrm{v}^{\frac{1}{2}}=\mathrm{T}_{2} \times(2 \mathrm{v})^{1 / 2}$
$\mathrm{~T}_{2}=\frac{\mathrm{T}}{\sqrt{2}}$
$\mathrm{WD}=\frac{\mathrm{R}\left[\frac{\mathrm{T}}{\sqrt{2}}-\mathrm{T}\right]}{1-\frac{3}{2}}=\frac{2 \mathrm{R}}{\sqrt{2}}[\sqrt{2} \mathrm{~T}-\mathrm{T}]$
$=\operatorname{RT}[2-\sqrt{2}]$
50. The equivalent resistance between $A$ and $B$ is :

(1) $27 \Omega$
(2) $19 \Omega$
(3) $25 \Omega$
(4) $18 \Omega$

Sol. 2

$\mathrm{R}_{\mathrm{eq}}=5 \Omega+6 \Omega+8 \Omega$
$=19 \Omega$

## SECTION - B

51. When a coil is connected across a 20 V dc supply, it draws a current of 5 A . When it is connected across 20 V , 50 Hz ac supply, it draws a current of 4 A . The self inductance of the coil is $\qquad$ mH . (Take $\pi=3$ )

Sol. 10
In DC circuit
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}$ (at steady state)
$\mathrm{R}=\frac{20}{5}=4 \Omega$
In AC CKt
$I=\frac{V}{Z}$
$4=\frac{20}{\sqrt{\mathrm{R}^{2}+(\mathrm{L} \omega)^{2}}}$
$16+(\mathrm{L} \omega)^{2}=25$
$\mathrm{L} \omega=3$
$\mathrm{L}=\frac{3}{2 \times \pi \times \mathrm{f}}=\frac{3}{2 \times 3 \times 50}=\frac{1}{100}=10 \mathrm{mH}$
52. A star has $100 \%$ helium composition. It starts to convert three ${ }^{4} \mathrm{He}$ into one ${ }^{12} \mathrm{C}$ via triple alpha process as ${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\mathrm{Q}$. The mass of the star is $2.0 \times 10^{32} \mathrm{~kg}$ and it generates energy at the rate of $5.808 \times$ $10^{30} \mathrm{~W}$. The rate of converting these ${ }^{4} \mathrm{He}$ to ${ }^{12} \mathrm{C}$ is $\mathrm{n} \times 10^{42} \mathrm{~s}^{-1}$, where n is $\qquad$ -.
[Take, mass of ${ }^{4} \mathrm{He}=4.0026 \mathrm{u}$, mass of ${ }^{12} \mathrm{C}=12 \mathrm{u}$ ]

## Sol. 5

$3{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{12} \mathrm{C}+\mathrm{Q}$
Power generated $=\frac{N}{t} Q \quad(N=N o$. of reactions/sec)
$\mathrm{Q}=\left(3 \mathrm{~m}_{4 \mathrm{He}}-\mathrm{m}_{12 \mathrm{c}}\right) \mathrm{C}^{2}$
$\mathrm{Q}=(3 \times 4.0026-12) \mathrm{C}^{2}=7.266 \mathrm{Mev}$
$\frac{\mathrm{N}}{\mathrm{t}}=\frac{\text { power }}{\mathrm{Q}}=\frac{5.808 \times 10^{30}}{7.266 \times 10^{6} \times 1.6 \times 10^{-19}}=15 \times 10^{42}$
rate of conversion of ${ }^{4} \mathrm{He}$ in ${ }^{12} \mathrm{C}=5 \times 10^{42}$
53. At the centre of a half ring of radius $R=10 \mathrm{~cm}$ and linear charge density $4 \mathrm{nCm}^{-1}$, the potential is $x \pi \mathrm{~V}$. The value of $x$ is $\qquad$ —.
Sol. 36
$\mathrm{V}=\frac{\mathrm{KQ}}{\mathrm{R}}=\frac{9 \times 10^{9} \times 4 \times 10^{-9} \times \pi \times 10 \times 10^{-2}}{10 \times 10^{-2}}$
$=36 \pi \mathrm{~V}$
54. If $\vec{a}$ and $\vec{b}$ makes an angle $\cos ^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$ for $|\vec{a}|=n|\vec{b}|$ The integer value of $n$ is $\qquad$ .

## Sol. 3

Angle $b / w \vec{a}$ and $\vec{b}$ is $\cos ^{-1}\left(\frac{5}{9}\right)$
$|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$
$\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab} \cos \theta=2\left(\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \cos \theta\right)$
$\mathrm{n}^{2} \not b^{\not 2}+\not b^{\not 2}+2 \mathrm{n} \not b^{\mathscr{L}} \times \frac{5}{9}=2 \mathrm{n}^{2} \not b^{\not 2}+2 \not b^{\not 2}-4 \mathrm{n} \not b^{\not 2} \times \frac{5}{9}$
$\mathrm{n}^{2}+1+\frac{10 \mathrm{n}}{9}=2 \mathrm{n}^{2}+2-\frac{20 \mathrm{n}}{9}$
$\mathrm{n}^{2}-\frac{30 \mathrm{n}}{9}+1=0$
$9 n^{2}-30 n+9=0$
$\mathrm{n}=3, \frac{1}{3}$
55. In a Young's double slit experiment, the intensity at a point is $\left(\frac{1}{4}\right)^{\text {th }}$ of the maximum intensity, the minimum distance of the point from the central maximum is $\qquad$ $\mu \mathrm{m}$.
(Given : $\lambda=600 \mathrm{~nm}, \mathrm{~d}=1.0 \mathrm{~mm}, \mathrm{D}=1.0 \mathrm{~m}$ )
Sol. 200
$\mathrm{I}=\mathrm{I}_{0} \cos ^{2} \frac{\Delta \phi}{2}$
$\frac{\mathrm{I}_{0}}{4}=\mathrm{I}_{0} \cos ^{2} \frac{\Delta \phi}{2}$
$\Delta \phi=\frac{2 \hbar}{3}=\frac{2 \hbar}{\lambda}(\Delta \mathrm{n})$
$\frac{\mathrm{dy}}{\mathrm{D}}=\frac{600 \times 10^{-9}}{3}$
$y=\frac{2 \times 10^{-7} \times 1}{10^{-3}}=2 \times 100 \mu \mathrm{~m}$
$=200 \mu \mathrm{~m}$
56. A square loop of edge length 2 m carrying current of 2 A is placed with its edges parallel to the $\mathrm{x}-\mathrm{y}$ axis. A magnetic field is passing through the $x-y$ plane and expressed as $\vec{B}=B_{o}(1+4 x) \hat{k}$, where $B_{0}=5$ T. The net magnetic force experienced by the loop is $\qquad$ N.

Sol. 160
$\mathrm{F}_{\text {net }}$ on $\mathrm{AD} \& \mathrm{CB}=0$
$F_{\text {net }} A B=2 \times 2 \times 5=20 \mathrm{~N}(-\hat{\mathrm{i}})$
$\mathrm{F}_{\text {net }} \mathrm{DC}=2 \times 2 \times 45=180 \mathrm{~N}(\hat{\mathrm{i}})$
$\mathrm{F}_{\text {net }}=160 \mathrm{~N}(\hat{\mathrm{i}})$

57. The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitudes of $4 \mathrm{~m}, 2 \mathrm{~ms}^{-1}$ and $16 \mathrm{~ms}^{-2}$ at a certain instant. The amplitude of the motion is $\sqrt{\mathrm{x}}, \mathrm{m}$ where x is
$\qquad$ -.
Sol. 17
$X=4 m$
$2=\omega \sqrt{\mathrm{A}^{2}-\mathrm{X}^{2}}=\omega \sqrt{\mathrm{A}^{2}-16} \Rightarrow 4=\omega^{2}\left(\mathrm{~A}^{2}-16\right)$
$16=\omega^{2} \times 4 \Rightarrow \omega^{2}=4 \Rightarrow \omega=2$
$A=A\left[\mathrm{~A}^{2}-16\right]$
$1=\mathrm{A}^{2}-16$
$\mathrm{A}^{2}=17$
$\mathrm{A}=\sqrt{17}$
58. A string is wrapped around the rim of a wheel of moment of inertia $0.40 \mathrm{kgm}^{2}$ and radius 10 cm . The wheel is free to rotate about its axis. Initially the wheel is at rest. The string is now pulled by a force of 40 N . The angular velocity of the wheel after 10 s is $\mathrm{x} \mathrm{rad} / \mathrm{s}$, where x is $\qquad$ _.
Sol. 100
$\tau=\mathrm{I} \alpha$
$\frac{10}{100} \times 40=4 \times \alpha$
$\alpha=\frac{4}{0.4}=10 \mathrm{rad} / \mathrm{S}^{2}$
$\mathrm{w}_{\mathrm{f}}=0+10 \times 10=100 \mathrm{rad} / \mathrm{sec}$.
59. The current flowing through the $1 \Omega$ resistor is $\frac{n}{10} A$. The value of $n$ is $\qquad$ .


Sol. 25

A

$\frac{x-5}{2}+\frac{x-0}{2}+\frac{x-(y-10)}{1}=0$
$\mathrm{x}-5+\mathrm{x}+2 \mathrm{x}-2 \mathrm{y}+20=0$
$15=2 y-4 x$
$\frac{y-5}{4}+\frac{y-0}{4}+\frac{y-10-x}{1}=0 y-5+y+4 y-40-4 x=0$
$6 y-4 x=45$
on solving (1) and (2)
$(x=0, y=7.5 v) i=0-\frac{(y-10)}{1}$
$\mathrm{i}=2.5 \mathrm{~A}$
60. Two persons pull a wire towards themselves. Each person exerts a force of 200 N on the wire. Young's modulus of the material of wire is $1 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$. Original length of the wire is 2 m and the area of cross section is $2 \mathrm{~cm}^{2}$. The wire will extend in length by $\qquad$ $\mu \mathrm{m}$.

## Sol. 20

$\mathrm{y}=\frac{\mathrm{F} \ell}{\mathrm{A} \Delta \ell}$
$\Delta \ell=\frac{\mathrm{F} \ell}{\mathrm{Ay}}$
$=\frac{200 \times 2}{2 \times 10^{-4} \times 10^{11}}=200 \times 10^{4} \times 10^{-11}$
$=2 \times 10^{-5}$
$=20 \mu \mathrm{~m}$

## GIVE YOUR JEE ADVANCED 2024 PREPRATION A FINAL CHECK



## 95\%ile to 97.99\%ile

Offline : 50\% scholarship
Online : 100\% scholarship

98\%ile to 98.99\%ile
Offline : $100 \%$ scholarship
Online : 100\% scholarship

## 99\%ile or ABOVE VICTORY <br> BATCH

99.99\%ile will be provided with free residential facilities (Hostel+Food)

Continuing to keep the pledge of imparting education for the last 17 Years

## $65136+$ wimem 12142 3258417875

Most Promising RANKS
Produced by MOTION Faculties

## NEET / AIIMS



JEE MAIN+ADVANCED


## Nation's Best SELECTION <br> Percentage (\%) Ratio

Student Qualified in NEET
(2023)

6492/7084 = 91.64\% (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANCED
(2023)

2747/5182 = 53.01\%
(2022)

1756/4818 = 36.45\%

Student Qualified in JEE MAIN
(2024-First Attemp)
6495/10592 = 61.31\%
(2023)

5993/8497 = 70.53\%
(2022)

4818/6653 $=72.41 \%$

