JEE MAIN 2024 SESSION-2 Paper with Solution

PHYSICS | 04th April 2024 _ Shift-1

Motion

PRE-ENGINEERING
JEE (Main+Advanced)

PRE-MEDICAL

FOUNDATION (Class 6th to 10th)
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free: 18002121799 | www.motion.ac.in | Mail: info@motion.ac.in

MOTION LEARNING APP

Scan Code for Demo Class

SECTION - A

31. P-T diagram of an ideal gas having three different densities ρ_1, ρ_2, ρ_3 (in three different cases) is shown in the figure. Which of the following is correct:

$$(1) \rho_1 > 0$$

(2)
$$\rho_2 < \rho_3$$

(2)
$$\rho_1 < \rho_2$$

(4)
$$\rho_1 = \rho_2 = \rho_3$$

$$P = \rho \frac{RT}{M_0}$$

$$\frac{P}{T} = \frac{\rho R}{M_0}$$

i.e.
$$\overline{\frac{P}{T} \alpha \rho}$$

$$\therefore \rho_1 > \rho_2 > \rho_3$$

32. The equation of stationary wave is :

$$y = 2a sin \left(\frac{2\pi nt}{\lambda}\right) cos \left(\frac{2\pi x}{\lambda}\right).$$

Which of the following is NOT correct:

- (1) The dimensions of x is [L]
- (3) The dimensions of n is $[LT^{-1}]$
- (2) The dimensions of nt is [L]
- (4) The dimensions of n/λ is [T]

$$y = 2a \sin\left(\frac{\pi nt}{\lambda}\right) \cos\left(\frac{2\pi x}{\lambda}\right)$$

(i)
$$[x] = L$$

(ii)
$$\left[\frac{\pi nt}{\lambda}\right] = 1 \implies [nt] = 1 \cdot [\lambda] = L$$

(iii)
$$[nt] = L \Longrightarrow [n] = LT^{-1}$$

(iv)
$$\left[\frac{n}{\lambda}\right] = \frac{LT^{-1}}{L} = T^{-1}$$

33. The electric field in an electromagnetic wave is given by $\vec{E} = \hat{i} + 40 \cos \omega \left(t - \frac{z}{c}\right) NC^{-1}$. The magnetic field induction of this wave is (in SI unit):

(1)
$$\vec{B} = \hat{j}40\cos\omega(t - \frac{z}{c})$$

(2)
$$\vec{B} = \hat{k} \frac{40}{c} \cos \omega (t - \frac{z}{c})$$

(3)
$$\vec{B} = \hat{i} \frac{40}{c} \cos \omega (t - \frac{z}{c})$$

(4)
$$\vec{B} = \hat{j} \frac{40}{c} \cos \omega (t - \frac{z}{c})$$

Sol. 4

$$\vec{E} = 40\cos\left(\omega t - \frac{\omega}{c}z\right)NC^{-1}\hat{i}$$

Direction of \hat{c} is along +z

and Direction of \hat{c} must be along $\vec{E} \times \vec{B}$.

 \vec{B} must be along $+\hat{j}$.

$$E_0 = B_0 C$$

$$B_0 = \frac{E_0}{C} = \frac{40}{C}$$

34. The resistances of the platinum wire of a platinum resistance thermometer at the ice point and steam point are 8Ω and 10Ω respectively. After inserting in a hot bath of temperature 400°C, the resistance of platinum wire is:

$$(1) 8 \Omega$$

$$(2) 10 \Omega$$

$$(3) 16 \Omega$$

$$(4) 2 \Omega$$

Sol.

Given,
$$R_0 = 8\Omega$$

And
$$R_{100} = 10\Omega$$

$$\frac{C-0}{100} = \frac{R-R_0}{R_{100}-R_0}$$

$$\Rightarrow \frac{400}{100} = \frac{R - 8}{2}$$

$$\Rightarrow$$
 R - 8 = 8 \Rightarrow R = 16 Ω

35. Which figure shows the correct variation of applied potential difference (V) with photoelectric current (I) at two different intensities of light $(I_1 < I_2)$ of same wavelengths:

Saturation current depends on intensity of incident light.

Also according to question, both have same wavelength.

- \therefore There KE_{max} will be same.
- ... There stopping potential will also be same.
- 36. To measure the internal resistance of a battery, potentiometer is used. For $R = 10 \Omega$, the balance point is observed at l = 500 cm and for $R = 1 \Omega$ the balance point is observed at l = 400 cm. The internal resistance of the battery is approximately:

(1)
$$0.3 \Omega$$

3

$$(2) 0.4 \Omega$$

$$(3) 0.1 \Omega$$

(4)
$$0.2 \Omega$$

Sol.

$$i = \frac{\varepsilon}{r + R}$$

$$\varepsilon - ir = \varepsilon - \frac{\varepsilon}{r + R} \cdot r$$

$$=\frac{\epsilon r+\epsilon R-\epsilon r}{r+R}$$

$$\varepsilon - ir = \frac{\varepsilon R}{r + R}$$

also,
$$\varepsilon - ir = \frac{v}{1} \cdot x$$

$$\therefore \frac{V}{1}x = \frac{\varepsilon R}{r+R}$$

Now,
$$\frac{X_1}{X_2} = \frac{R_1}{r + R_1} \times \frac{r + R_2}{R_2}$$

$$r + 10 = 8r + 8$$

$$7r = 2$$

$$r = \frac{2}{7} \approx 0.3$$

37. Given below are two statements:

Statement I : When speed of liquid is zero everywhere, pressure difference at any two points depends on equation $P_1 - P_2 = \rho g(h_2 - h_1)$.

Statement II : In ventury tube shown $2gh = v_1^2 - v_2^2$

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I incorrect but Statement II is correct.

$$P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2$$

$$P_1 - P_2 = \frac{1}{2} \rho \Big(v_2^2 - v_1^2 \Big)$$

$$\rho gh = \frac{1}{2}\rho \left(v_2^2 - v_1^2\right)$$

$$v_2^2 - v_1^2 = 2gh$$

statement II is incorrect

- 38. An electron is projected with uniform velocity along the axis inside a current carrying long solenoid. Then -
 - (1) The electron will continue to move with uniform velocity along the axis of the soldnoid
 - (2) the electron will be accelerated along the axis
 - (3) the electron path will be circular about the axis
 - (4) the electron will experience a force at 45° to the axis and execute a helical path.

Sol. 1

$$\vec{F} = q(\vec{V} \times \vec{B})$$

Both $\vec{V} \& \vec{B}$ will be in same direction

:. Force on electron will be zero.

Option 1 is correct.

- 39. On celcius scale the temperature of body increases by 40°C. The increase in temperature on Fahrenheit scale is -
 - $(1) 68^{\circ}F$
- $(2) 70^{\circ} F$
- $(3) 72^{\circ}F$
- $(4) 75^{\circ} F$

Sol. 3

$$\frac{C-0}{100} = \frac{F=32}{180}$$

$$C = \frac{5}{9}(F - 32)$$

$$\Delta C = \frac{5}{9} \Delta F$$

$$40 = \frac{5}{9}\Delta F$$

$$\Rightarrow \Delta F = 72^{\circ} F$$

40. The value of net resistance of the network as shown in the given figure is –

(1) (5/2) Ω

(2) $(30/11) \Omega$

(3) $(15/4) \Omega$

 $(4) 6 \Omega$

Sol.

The circuit is equivalued to

$$Rep = \frac{15 \times 10}{25} = 6\Omega$$

41. An effective power of a combination of 5 identical convex lenses which are kept in contact along the principal axis is 25D. Focal length of each of the convex lens is -

(1) 20 cm

(2) 50 cm

(3) 25 cm

(4) 500 cm

Sol.

$$\frac{1}{f_q} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \frac{1}{f_4} + \frac{1}{f_5}$$

$$25 = \frac{5}{f}$$

$$f = \frac{1}{5}m = 20cm$$

- 42. In an ac circuit, the instantanenous current is zero, when the instantanenous voltage is maximum. In this case, the source may be connected to
 - A. Pure inductor.
 - B. pure capacitor.
 - C. pure resistor.
 - D. combination of an inductor and capacitor.

Choose the correct answer from the options given below -

- (1) B,C and D only
- (2) A,B and D only
- (3) A and B only
- (4) A,B and C only

Sol.

It can only be possible if phase difference b/w current and voltage is $\pi/2$.

- 43. Which of the following nuclear fragments corresponding to nuclear fission between neutron $\binom{1}{0}$ n and uranium isotope $\binom{235}{92}$ U is correct.
 - (1) $_{56}^{144}$ Ba $+_{36}^{89}$ Kr $+3_{0}^{1}$ n

(2) $_{56}^{144}$ Ba $+_{36}^{89}$ Kr $+4_{0}^{1}$ n

(3) $_{51}^{153}$ Sb $+_{41}^{99}$ Nb $+3_{0}^{1}$ n

 $(4) \int_{56}^{140} Xe + \int_{38}^{94} Sr + 3_0^1 n$

The original fission reaction is given by

$$^{235}\text{U} + \text{n} \rightarrow ^{141}\text{Ba} + ^{92}\text{kr} + 3\text{n} + \text{energy}$$

All the given options can also be checked by balancing number of neutrons on both sides.

44. If a rubber ball falls from a height h and rebounds upto the height of h/2. The percentage loss of total energy of the initial system as well as velocity ball before it strikes the ground, respectively, are -

(1)
$$40\%, \sqrt{2gh}$$

(2) 50%,
$$\sqrt{\frac{gh}{2}}$$
 (3) 50%, $\sqrt{2gh}$ (4) 50%, \sqrt{gh}

(3) 50%,
$$\sqrt{2gh}$$

(4) 50%,
$$\sqrt{gh}$$

Sol. 3

$$E_A = Mgh$$

$$E_B = \frac{Mgh}{2}$$

i.e. 50% loss.

45. An infinitely long positively charged straight thread has a linear charge density λ Cm⁻¹. An electron revolves along a circular path having axis along the length of the wire. The graph that correctly represents the variation of the kinetic energy of electron as a function of radius of circular path from the wire is -

JEE MAIN 2024 SESSION-2

Sol. 2

$$\frac{2Ke\lambda}{r'} = \frac{mv^2}{r'}$$

$$mv^2 = 2Ke\lambda$$

$$\frac{1}{2}mv^2 = 2Ke\lambda = constant$$

46. A wooden block, initially at rest on the ground, is pushed by a force which increases linearly with time t. Which of the following curve best describes acceleration of the block with time -

Sol. 2

let $F = \alpha t$

$$a = \frac{F}{m} = \frac{\alpha}{m}t$$

47. A metal wire of uniform mass density having length L and mass M is bent to form a semicircular arc and a particle of mass m is placed at the centre of the arc. The gravitational force on the particle by the wire is -

$$(2) \; \frac{GMm\pi}{2L^2}$$

(3)
$$\frac{2GMm\pi}{L^2}$$

$$(4) \frac{\text{GMm}\pi^2}{\text{L}^2}$$

Sol.

$$E_g = \frac{2 \cdot G \cdot \lambda}{R} = \frac{2GM}{L \cdot R}$$

also,
$$\pi R = L$$

$$R = \frac{L}{\pi}$$

$$\therefore E_g = \frac{2GM}{L \cdot \frac{L}{-}} = \frac{2GM\pi}{L^2}$$

$$F = mE_g = \frac{2GMm\pi}{L^2}$$

- A body travels 102.5 m in n^{th} second and 115.0 m in $(n + 2)^{th}$ second. The acceleration is -48.
 - $(1) 5 \text{ m/s}^2$
- (2) 12.5 m/s^2
- $(3) 6.25 \text{ m/s}^2$

$$S_{nth} = u + \frac{a}{2} (2n - 1)$$

$$102.5 = u + \frac{a}{2}(2n-1)$$
 ...(i)

$$115 = u + \frac{a}{2}(2n + 4 - 1)$$
 ...(ii)

Equation (ii) - (i)

$$115 - 102.5 = \frac{a}{2} \{ 2n + 3 - 2n + 1 \}$$

$$= \frac{a}{2} \times 4 = 2a$$

$$\Rightarrow a = \frac{12.5}{2} = 6.25 \text{ m/s}^2$$

49. The co-ordinates of a particle moving in x-y plane are given by –

$$x = 2 + 4t, y = 3t + 8t^2$$

The motion of the particle is -

- (1) uniform motion along a straight line
- (2) uniformly accelerated having motion along a parabolic path
- (3) non-uniformly accelerated
- (4) uniformly accelerated having motion along a straight line
- Sol.

$$x = 2 + 4t$$

$$y = 3t + 8t^2$$

$$v_x = \frac{dx}{dt} = 4 = constant$$

$$v_y = 3 + 16t$$

$$a_x = 0$$

$$a_v = +16$$

$$a_{net} = +16$$
 i.e. uniformly accelerated

Also,
$$t = \frac{x-2}{4}$$

$$\therefore y = 3\frac{(x-2)}{4} + 8\left(\frac{x-2}{4}\right)^2$$

$$= \frac{3}{4}x - \frac{3}{2} + \frac{1}{2}(x^2 + 4 - 4x)$$

$$y = \frac{3}{4}x - \frac{3}{2} + \frac{x^2}{2} + 2 - 2x$$

$$\Rightarrow 4y = 3x - 6 + 2x^2 + 4 - 4x$$

$$\Rightarrow \boxed{4y = 2x^2 - x - 2}$$

i.e. parabolic path.

JEE MAIN 2024 SESSION-2

50. In an experiment to measure focal length (f) of convex lens, the least count of the measuring scales for the position of object (u) and for the position of image (v) are Δu and Δv , respectively. The error in the measurement of the focal length of the convex lens will be -

(1)
$$2f \left[\frac{\Delta u}{u} + \frac{\Delta v}{v} \right]$$

(2)
$$f \left[\frac{\Delta u}{u} + \frac{\Delta v}{v} \right]$$

(3)
$$\frac{\Delta u}{u} + \frac{\Delta v}{v}$$

$$(1) \ 2f \left[\frac{\Delta u}{u} + \frac{\Delta v}{v} \right] \qquad (2) \ f \left[\frac{\Delta u}{u} + \frac{\Delta v}{v} \right] \qquad (3) \ \frac{\Delta u}{u} + \frac{\Delta v}{v} \qquad \qquad (4) \ f^2 \left[\frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right]$$

Sol.

$$\frac{1}{v} - \frac{1}{4} = \frac{1}{f}$$

$$\frac{-1}{v^2} dv + \frac{1}{u^2} du = \frac{-1}{f^2} df$$

$$\Delta f = f^2 \left(\frac{\Delta v}{v^2} + \frac{\Delta u}{u^2} \right)$$

SECTION - B

- 51. A soap bubble is blown to a diameter of 7 cm. 36960 erg of work is done in blowing it further. If surface tension of soap solution is 40 dyne/cm then the new radius is ____ cm. Take $\left(\pi = \frac{22}{7}\right)$
- Sol. $\Delta w = 2T.4\pi r_2^2 - 2T.4\pi r_1^2$ $r_2^2 - r_1^2 = \frac{\Delta w}{8T\pi} = \frac{36960 \times 7}{8 \times 40 \times 22} = 36.75$ $r_2^2 = 36.75 + \frac{49}{4}$ =36.75+12.25= 49 r = 7 cm
- Two forces \vec{F}_1 and \vec{F}_2 are acting on a body. One force has magnitude thrice that of the other force and the resultant 52. of the two forces is equal to the force of larger magnitude. The angle between \vec{F}_1 and \vec{F}_2 is $\cos^{-1}\left(\frac{1}{n}\right)$. The value

of |n| is _____. Sol. let $F_1 = F_0$ then, $F_2 = 3F_0$ also, $R = 3F_0$ $\therefore 3F_0 = \sqrt{F_0^2 + 9F_0^2 + 6F_0^2 \cos \theta}$ $3F_0 = F_0 \sqrt{10 + 6\cos\theta}$ $9 = 10 + 6\cos\theta$ $\cos \theta = -\frac{1}{6}$ |n| = 6

Twelve wires each having resistance 2Ω are joined to form a cube. A battery of 6V emf is joined across point a and c. The voltage difference between e and f is _____ V.

Sol. 1

$$R_{eq} = \frac{6 \times 2}{8} = \frac{3}{2}$$

$$i = \frac{v}{R_{eq}} = \frac{6}{3} \times 2 = 4A$$

$$V_{\rm ef}=i_{\rm ef}-R_{\rm ef}=0.5\times 2=1V$$

Two wavelengths λ_1 and λ_2 are used in Young's double slit experiment. $\lambda_1 = 450$ nm and $\lambda_2 = 650$ nm. The minimum order of fringe produced by λ_2 which overlaps with the fringe produced by λ_1 is n. The value of n is

$$m_2\lambda_2 = m_1\lambda_1$$

$$\frac{m_2}{m_1} = \frac{\lambda_1}{\lambda_2} = \frac{450}{650} = \frac{9}{13}$$

i.e. 9th maxima of 12 overlaps with 13th maxima of 11.

$$\therefore$$
 n = 9

An infinite plane sheet of charge having uniform surface charge density $+\sigma_s$ C/m² is placed on x-y plane. Another infinitely long line charge having uniform linear charge density $+\lambda_e$ C/m is placed at z=4 m plane and parallel to y-axis. If the magnitude values $|\sigma_s|=2$ $|\lambda_e|$ then at point (0,0,2), the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi\sqrt{n}$:1. The value of n is _____.

(00, 0, 2)

+σ

Sol. 16

$$\vec{E}_{sheet} = \frac{\sigma}{2 \in_{0}} \hat{k} = \frac{\lambda}{\in_{0}} \hat{k}$$

$$\vec{E}_{wire} = \frac{2k\lambda}{r} \left(-\hat{k} \right)$$

$$=\frac{2k\lambda}{2}(-\hat{k})$$

$$= k\lambda \left(-\hat{k}\right)$$

$$\frac{\left|\vec{E}_{sheet}\right|}{\left|\vec{E}_{wire}\right|} = \frac{\lambda}{\epsilon_0} \times \frac{1}{k\lambda} = \frac{1}{\epsilon_0 \ k} = \frac{1}{\epsilon_0 \times \frac{1}{4\pi \epsilon_0}}$$

$$=4\pi$$

$$\Rightarrow 4\pi = \pi \sqrt{n}$$

$$n = 16$$

The magnetic field existing in a region is given by $\vec{B} = 0.2(1+2x)\hat{k}T$. A square loop of edge 50 cm carrying 0.5 A current is placed in x-y plane with its edges parallel to the x-y axes, as shown in figure. The magnitude of the net magnetic force experienced by the loop is _____ mN.

$$\vec{F} = i (\vec{\ell} \times \vec{B})$$

 \rightarrow F₃ and F₄ will cancel each other.

$$\vec{F}_1 = 0.5 \times \frac{50}{100} \times \{0.2(1+4)\}\hat{i}$$

$$=\frac{1}{2}\times\frac{1}{2}\times1\hat{i}=\frac{1}{4}\hat{i}=0.25\hat{i}$$

$$\vec{F}_2 = -0.5 \times \frac{50}{100} \times \{0.2(1+5)\}\hat{i}$$

$$=-\frac{1}{2}\times\frac{1}{2}\{1.2\}\hat{i}$$

$$=-0.3\hat{i}$$

$$\vec{F}_{\text{net}} = -0.05\hat{i}(N)$$

$$=-50(mN)\hat{i}$$

A solid sphere and a hollow cylinder roll up without slipping on same inclined plane with same initial speed υ . The sphere and the cylinder reaches upto maximum heights h_1 and h_2 , respectively, above the initial level. The

ratio h_1 : h_2 is $\,\frac{n}{10}$. The value of n is _____

Sol.

Energy consevation

$$\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = mgh$$

for pure rolling; $v = \omega R$

$$\frac{1}{2}$$
mv² + $\frac{1}{2}$ I $\frac{v^2}{R^2}$ = mgh

$$\frac{1}{2}v^2\left(m + \frac{kmR^2}{R^2}\right) = mgh$$

$$\frac{1}{2}mv^2(1+k) = mgh$$

$$\frac{h_{_{1}}}{h_{_{2}}} = \frac{\left(k_{_{1}}+1\right) \cdot r_{_{1}}^{^{2}}}{\left(k_{_{2}}+1\right) r_{_{2}}^{^{2}}} = \frac{\frac{2}{5}+1}{1+1} = \frac{7}{5} \times \frac{1}{2} = \frac{7}{10}$$

$$n = 7$$

58. A hydrogen atom changes its state from n = 3 to n = 2. Due to recoil, the percentage change in the wave length of emitted light is approximately 1×10^{-n} . The value of n is _____.

[Given Rhc = 13.6 eV, hc = 1242 eV nm, h = 6.6×10^{-34} Js mass of the hydrogen atom = 1.6×10^{-27} kg]

Sol. 7

for
$$n = 3$$
 to $n = 2$

$$\Delta E = 13.6 \left(\frac{1}{4} - \frac{1}{9} \right) = 13.6 \times \frac{5}{36} = \frac{68}{36} = 1.88 \text{eV}$$

if recoil takes place

then,
$$\Delta E = \frac{hc}{\lambda'} + E_{_R}$$

$$\frac{hc}{\lambda'} = \Delta E - E_{R}$$

$$= \Delta E - \frac{1}{2} m \cdot \frac{h^2}{m^2 \lambda^{2}}$$

$$= \Delta E - \frac{h^2}{2m\lambda^{12}}$$

$$\frac{hc}{\lambda} - \frac{hc}{\lambda'} = \frac{h^2}{2m\lambda^2}$$

$$\frac{\lambda' - \lambda}{\lambda} = \frac{h}{2mc\lambda'} = \frac{hc}{2mc^2\lambda'} \approx \frac{\Delta E}{2mc^2}$$

$$\frac{\Delta \lambda}{\lambda} = \frac{1.88 \times 1.6 \times 10^{^{-19}}}{2 \times 1.6 - 10^{^{-27}} \times 9 \times 10^{^{16}}}$$

$$\approx 0.100 \times 10^{-8}$$

$$\frac{\Delta\lambda}{\lambda} \times 100 = 10 \times 10^{-8} = 1 \times 10^{-7}$$

- A alternating current at any instant is given by $i = [6 + \sqrt{56} \sin(100\pi t + \pi/3)] A$. The rms value of the current is ______A.
- Sol. 8

If
$$i = a + b \sin(\omega t + \theta)$$

$$i_{rms} = \sqrt{a^2 + \frac{b^2}{2}}$$

$$\therefore i_{rms} = \sqrt{36 + \frac{56}{2}}$$

$$= \sqrt{36 + 28} = \sqrt{64} = 8A$$

JEE MAIN 2024 SESSION-2

- 60. An elastic spring under tension of 3 N has a length a. Its length is b under tension 2 N. For its length (3a 2b), the value of tension will be _____ N.
- Sol. 5

$$k(a-x_0)=3$$

$$\Rightarrow a = \frac{3}{k} + x_0$$

$$k (b - x_0) = 2$$

$$\Rightarrow b = \frac{2}{k} + x_0 \qquad \dots (ii)$$

Now,
$$3a - 2b = \frac{9}{k} + 3x_0 - \frac{4}{k} - 2x_0$$

$$=\frac{5}{k}+x_{0}$$

$$\Rightarrow \left\{ (3a - 2b) - x_0 \right\} = \frac{5}{k}$$

$$\Rightarrow K\{(3a-2b)-x_{_0}\}=5$$

$$\therefore$$
 T = 5 N

GIVE YOUR JEE ADVANCED 2024 PREPRATION A FINAL CHECK

starting From

17th April 2024

OFFLINE Rs. 5000

ONLINE Rs. 2500

95%ile to 97.99%ile

Offline: 50% scholarship **Online**: 100% scholarship

98%ile to 98.99%ile

Offline: 100% scholarship
Online: 100% scholarship

99%ile or ABOVE VICTORY

99.99%ile will be provided with free residential facilities (Hostel+Food)

Continuing to keep the pledge of imparting education for the last 17 Years

SELECTIONS SINCE 2007

JEE (Advanced) 12142

JEE (Main)

NEET/AIIMS (Under 50000 Rank) NTSE/OLYMPIADS (6th to 10th class)

Most Promising RANKS Produced by MOTION Faculties

Nation's Best SELECTION Percentage (%) Ratio

NEET / AIIMS

AIR-1 to 10 25 Times

AIR-11 to 50 84 Times

AIR-51 to 100 84 Times

JEE MAIN+ADVANCED

AIR-1 to 10 8 Times

AIR-11 to 50 37 Times

AIR-51 to 100 41 Times

Student Qualified in **NEET**

(2023)

6492/7084 = **91.64%** (2022)

4837/5356 = **90.31%**

Student Qualified in JEE ADVANCED

(2023)

2747/5182 = **53.01%** (2022)

1756/4818 = **36.45%**

Student Qualified in JEE MAIN

(2024-First Attemp)

6495/10592 = **61.31%**

(2023)

5993/8497 = **70.53%**

(2022)

4818/6653 = **72.41%**

Founder & CEO