JEE MAIN 2024 asssonz Paper with Solution

PHYSICS | 04 ${ }^{\text {th }}$ April 2024 _ Shift-2

Motílon

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP

Scan Code for Demo Class

SECTION - A

31. A charge q is placed at the center of one of the surface of a cube. The flux linked with the cube is -
(1) $\frac{\mathrm{q}}{2 \epsilon_{0}}$
(2) $\frac{\mathrm{q}}{4 \epsilon_{0}}$
(3) $\frac{\mathrm{q}}{8 \epsilon_{0}}$
(4) zero

Sol. 1
$\phi=\frac{\mathrm{q}_{\text {en }}}{\varepsilon_{0}}$
$\mathrm{q}_{\text {en }}=\frac{\mathrm{q}}{2}$
$\phi=\frac{\mathrm{q}}{2 \varepsilon_{0}}$
32. A sample of gas at temperature T is adiabatically expanded to double its volume. Adiabatic constant for the gas is $\gamma=3 / 2$. The work done by the gas in the process is : $(\mu=1$ mole $)$
(1) $\mathrm{RT}[1-2 \sqrt{2}]$
(2) $\mathrm{RT}[2 \sqrt{2}-1]$
(3) $\mathrm{RT}[\sqrt{2}-2]$
(4) $\mathrm{RT}[2-\sqrt{2}]$

Sol. 4
$\mathrm{PV}=\mathrm{nRT}$
$P=\frac{n R T}{V}$
Also, $\mathrm{PV}^{\gamma}=$ constant
$\frac{\mathrm{nRT}}{\mathrm{V}} \mathrm{V}^{\gamma}=$ cons $\tan \mathrm{t}$
$\mathrm{TV}^{\gamma-1}=$ constant
$\mathrm{TV}^{\gamma-1}=\mathrm{T}_{2} \cdot(2 \mathrm{~V})^{\gamma-1}$
$\mathrm{T}_{2}=\mathrm{T} \cdot\left(\frac{1}{2}\right)^{1 / 2}=\frac{\mathrm{T}}{\sqrt{2}}$
$\mathrm{W}=\frac{\mathrm{nR}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\gamma-1}$
$=2 n R\left(T-\frac{T}{\sqrt{2}}\right)$
$=\operatorname{RT}(2-\sqrt{2})$
33. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Number of photons increases with increase in frequency of light.
Reason R: Maximum kinetic energy of emitted electrons increases with the frequency of incident radiation In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both A and R are correct and R is not the correct explanation of A
(2) Both A and R are correct and R is the correct explanation of A
(3) A is correct but R is not correct
(4) A is not correct but R is correct.

Sol. 4
Number of photons remains unchanged with increase in frequency.
By relation
$\mathrm{hv}=\phi_{0}+\mathrm{k}_{\text {max }}$
if v increases, then $\mathrm{k}_{\text {max }}$ increases.
34. The width of one of the two slits in a Young's double slit experiment is 4 times that of the other slit. The ratio of the maximum of the minimum intensity in the interference pattern is -
(1) $1: 1$
(2) $16: 1$
(3) $9: 1$
(4) $4: 1$

Sol. 3
$\mathrm{I}_{1}=\mathrm{I}_{0}$
$\mathrm{I}_{2}=4 \mathrm{I}_{0}$
$\frac{I_{\text {max }}}{I_{\text {min }}}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}$
$=\frac{9 \mathrm{I}_{0}{ }^{2}}{\mathrm{I}_{0}{ }^{2}}=9$
35. Identify the logic gate given in the circuit :

(1) NOR gate
(2) NAND gate
(3) OR gate
(4) AND gate

Sol. 3

36. Given below are two statements :

Statement-I: The contact angle between a solid and a liquid is a property of the material of the solid and liquid as well.
Statement-II: The rise of a liquid in a capillary tube does not depend on the inner radius of the tube.
In the light of the above statements, choose the correct answer from the options given below :
(1) Statement I is false but Statement II is true.
(2) Both Statement I and Statement II are false.
(3) Both Statement I and Statement II are true.
(4) Statement I is true but Statement II is false.

Sol. 4
$\mathrm{h}=\frac{2 \mathrm{~T} \cos \theta}{\rho \mathrm{rg}}$
here, r is radius of tube.
37. Correct formula for height of a satellite from earths surface is -
(1) $\left(\frac{T^{2} R^{2} g}{4 \pi^{2}}\right)^{1 / 3}-R$
(2) $\left(\frac{T^{2} R^{2} g}{4 \pi}\right)^{1 / 2}-R$
(3) $\left(\frac{T^{2} R^{2}}{4 \pi^{2} g}\right)^{1 / 3}-R$
(4) $\left(\frac{T^{2} R^{2} g}{4 \pi^{2}}\right)^{-1 / 3}+R$

Sol. 1

38. Which of the diode circuit shows correct biasing used for the measurement of dynamic resistance of p-n junction diode -
(1)

(2)

(3)

(4)

Sol. 2
For conduction of current diode must be in forward biased mode.
which is only in option (2).
So, option (2) is correct.
39. An electric bulb rated $50 \mathrm{~W}-200 \mathrm{~V}$ is connected across a 100 V supply. The power dissipation of the bulb is -
(1) 12.5 W
(2) 25 W
(3) 100 W
(4) 50 W

Sol. 1
Resistance
$\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}=\frac{(200)^{2}}{50}=800 \Omega$
Power dissipated $=\frac{\mathrm{V}_{1}{ }^{2}}{\mathrm{R}}$
$=\frac{(100)^{2}}{800}=\frac{100}{8}=12.5 \mathrm{~W}$
40. In simple harmonic motion, the total mechanical energy of given system is E. If mass of oscillating particle P is doubled then the new energy of the system for same amplitude is -

(1) $\mathrm{E} \sqrt{2}$
(2) E
(3) 2 E
(4) $\mathrm{E} / \sqrt{2}$

Sol. 2
$\mathrm{E}=\mathrm{KE}+\mathrm{PE}$
$E=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)+\frac{1}{2} m \omega^{2} x^{2}$
also, $\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$
If m is doubled, $\omega^{\prime}=\frac{\omega}{\sqrt{2}}$
Here, value of $m \omega^{2}$ remains constant
41. A 90 kg body placed at 2 R distance from surface of earth experiences gravitational pull of ($\mathrm{R}=$ Radius of earth, $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(1) 100 N
(2) 300 N
(3) 120 N
(4) 225 N

Sol. 1

g at height h from earth's surface
$\mathrm{g}_{\mathrm{h}}=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}$
$\mathrm{g}_{\mathrm{h}}=\frac{\mathrm{GM}}{9 \mathrm{R}^{2}}=\frac{\mathrm{g}}{9}(\because \mathrm{~h}=2 \mathrm{R})$
gravitational pull
$=\mathrm{mg}_{\mathrm{h}}$
$=90 \times \frac{\mathrm{g}}{9}$
$=10 \mathrm{~g}=100 \mathrm{~N}$
42. According to Bohr's theory, the moment of momentum of an electron revolving in $4^{\text {th }}$ orbit of hydrogen atom is -
(1) $\frac{h}{2 \pi}$
(2) $8 \frac{\mathrm{~h}}{\pi}$
(3) $2 \frac{\mathrm{~h}}{\pi}$
(4) $\frac{h}{\pi}$

Sol. 3
moment of momentum $L=\frac{n h}{2 \pi}$
put $\mathrm{n}=4$
$\mathrm{L}=\frac{4 \mathrm{~h}}{2 \pi}=\frac{2 \mathrm{~h}}{\pi}$
43. Arrange the following in the ascending order of wavelength :
A. Gamma rays (λ_{1})
B. x - rays $\left(\lambda_{2}\right)$
C. Infrared waves $\left(\lambda_{3}\right)$
D. Microwaves $\left(\lambda_{4}\right)$

Choose the most appropriate answer from the options given below
(1) $\lambda_{4}<\lambda_{3}<\lambda_{1}<\lambda_{2}$
(2) $\lambda_{2}<\lambda_{1}<\lambda_{4}<\lambda_{3}$
(3) $\lambda_{4}<\lambda_{3}<\lambda_{2}<\lambda_{1}$
(4) $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$

Sol. 4
order of wavelength
gamma rays $<x-$ rays $<$ infrared $<$ microwaves
$\Rightarrow \lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$
44. A body of m kg slides from rest along the curve of vertical circle from point A to B in friction less path. The velocity of the body at B is -

(given, $\mathrm{R}=14 \mathrm{~m}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\sqrt{2}=1.4$)
(1) $21.9 \mathrm{~m} / \mathrm{s}$
(2) $10.6 \mathrm{~m} / \mathrm{s}$
(3) $19.8 \mathrm{~m} / \mathrm{s}$
(4) $16.7 \mathrm{~m} / \mathrm{s}$

Sol. 1
by conservation of mechanical energy
decrease in P.E. $=$ increase in K.E.
$\Rightarrow \operatorname{mg}\left(\mathrm{R}+\frac{\mathrm{R}}{\sqrt{2}}\right)=\frac{1}{2} \mathrm{mv}_{\mathrm{B}}^{2}-0$
$\Rightarrow \quad 2 \mathrm{gR}\left(1+\frac{1}{\sqrt{2}}\right)=\mathrm{v}_{\mathrm{B}}^{2}$
$\Rightarrow \quad \mathrm{v}_{\mathrm{B}}^{2}=2 \times 10 \times 14 \times\left(1+\frac{1}{1.4}\right)$
$\mathrm{v}_{\mathrm{B}}=\sqrt{20 \times 24}$

$=4 \sqrt{30}$
$\approx 21.9 \mathrm{~m} / \mathrm{s}$
45. A cyclist starts from the point P of a circular ground of radius 2 km and travels along its circumference to the point S. The displacement of a cyclist is -

(1) 4 km
(2) 6 km
(3) $\sqrt{8} \mathrm{~km}$
(4) 8 km

Sol. 3

displacement
$\mathrm{PS}=\sqrt{(\mathrm{OS})^{2}+(\mathrm{OP})^{2}}$
$=\sqrt{2^{2}+2^{2}}$
$=\sqrt{8} \mathrm{~km}$
46. The translational degrees of freedom $\left(f_{t}\right)$ and rotational degrees of freedom $\left(f_{r}\right)$ of CH_{4} molecule are -
(1) $f_{t}=3$ and $f_{r}=3$
(2) $f_{t}=2$ and $f_{r}=3$
(3) $f_{t}=2$ and $f_{r}=2$
(4) $f_{t}=3$ and $f_{r}=2$

Sol. 1
CH_{4} is non-linear and polyatomic
47. Applying the principle of homogeneity of dimensions, determine which one is correct, where T is time period, G is gravitational constant, M is mass, r is radius of orbit.
(1) $\mathrm{T}^{2}=\frac{4 \pi^{2} \mathrm{r}^{3}}{\mathrm{GM}}$
(2) $\mathrm{T}^{2}=\frac{4 \pi^{2} \mathrm{r}^{2}}{G M}$
(3) $\mathrm{T}^{2}=4 \pi^{2} \mathrm{r}^{3}$
(4) $\mathrm{T}^{2}=\frac{4 \pi^{2} \mathrm{r}}{\mathrm{GM}^{2}}$

Sol. 1
$\left[\mathrm{T}^{2}\right]=\mathrm{T}^{2}$
Now,
(1) $\left[\frac{4 \pi^{2} r^{3}}{G M}\right]=\frac{L^{3}}{\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2} \mathrm{M}^{1}}=\mathrm{T}^{2}$
(2) $\left[\frac{4 \pi r^{2}}{G M}\right]=\frac{\mathrm{L}^{2}}{\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2} \mathrm{M}^{1}}=\mathrm{LT}^{2}$
(3) $\left[4 \pi^{2} r^{3}\right]=L^{3}$
(4) $\left[\frac{4 \pi^{2} \mathrm{r}}{\mathrm{GM}^{2}}\right]=\frac{\mathrm{L}}{\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2} \mathrm{M}^{2}}=\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{2}$
48. Match List-I with List-II

Choose the correct answer from the options given below -
(1) A-IV, B-I, C-II, D-III
(2) A-I, B-IV, C-III, D-II
(3) A-I, B-IV, C-II, D-III
(4) A-IV, B-I, C-III, D-II

Sol. 3
In purely capacitive, current leads voltage by 90°
In purely inductive, current lags voltage by 90°
At resonance, $\mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}}$
i.e., $Z=R$
49. A 2 kg brick begins to slide over a surface which is inclined at an angle of 45° with respect to horizontal axis. The co-efficient of static friction between their surfaces is -
(1) 1
(2) 0.5
(3) 1.7
(4) $\frac{1}{\sqrt{3}}$

Sol. 1

Slipping starts when
$\tan \theta=\mu_{\text {s }}$
$\Rightarrow \mu_{\mathrm{s}}=\tan 45^{\circ}$
$\mu_{\mathrm{s}}=1$
50. The magnetic moment of a bar magnet is $0.5 \mathrm{Am}^{2}$. It is suspended in a uniform magnetic field of $8 \times 10^{-2} \mathrm{~T}$. The work done in rotating it from its most stable to most unstable position is -
(1) $16 \times 10^{-2} \mathrm{~J}$
(2) zero
(3) $8 \times 10^{-2} \mathrm{~J}$
(4) $4 \times 10^{-2} \mathrm{~J}$

Sol. 3

$\mathrm{U}=-\overrightarrow{\mathrm{M}} \cdot \overrightarrow{\mathrm{B}}$
$\Delta \mathrm{U}=2 \mathrm{MB}=2 \times 0.5 \times 8 \times 10^{-2}$
$=8 \times 10^{-2} \mathrm{~J}$

SECTION - B

51. Two wires A and B are made up of the same material and have the same mass. Wire A has radius of 2.0 mm and wire B has radius of 4.0 mm . The resistance of wire B is 2Ω. The resistance of wire A is \qquad Ω.

Sol. 32

$\mathrm{r}_{\mathrm{A}}=2 \times 10^{-3} \mathrm{~m}, \mathrm{r}_{\mathrm{B}}=4 \times 10^{-3} \mathrm{~m}, \rho_{\mathrm{A}}=\rho_{\mathrm{B}}$
$\mathrm{R}_{\mathrm{B}}=2 \Omega$
we know $\mathrm{R}=\frac{\rho \ell}{\mathrm{A}}$
$\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{\rho_{\mathrm{A}} \ell_{\mathrm{A}}}{\mathrm{A}_{\mathrm{A}}} \times \frac{\mathrm{A}_{\mathrm{B}}}{\rho_{\mathrm{B}} \ell_{\mathrm{B}}}=\frac{\ell_{\mathrm{A}}}{\ell_{\mathrm{B}}} \frac{\mathrm{A}_{\mathrm{B}}}{\mathrm{A}_{\mathrm{A}}}$
We have $\mathrm{m}_{\mathrm{A}}=\mathrm{m}_{\mathrm{B}}$
$\rho_{\mathrm{A}} \ell_{\mathrm{A}} \mathrm{A}_{\mathrm{A}}=\rho_{\mathrm{B}} \ell_{\mathrm{B}} \mathrm{A}_{\mathrm{B}}$
$\Rightarrow \frac{\ell_{\mathrm{A}}}{\ell_{\mathrm{B}}}=\frac{\mathrm{A}_{\mathrm{B}}}{\mathrm{A}_{\mathrm{A}}}$
from equation (1) \& equation (2)
$\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}\left(\frac{\mathrm{A}_{\mathrm{B}}}{\mathrm{A}_{\mathrm{A}}}\right)^{2}=2\left(\frac{\pi \times\left(4 \times 10^{-3}\right)^{2}}{\pi \times\left(2 \times 10^{-3}\right)^{2}}\right)^{2}$
$=2 \times 16=32 \Omega$
52. Mercury is filled in a tube of radius 2 cm up to a height of 30 cm . The force exerted by mercury on the bottom of the tube is \qquad N.
(Given, atmospheric pressure $=10^{5} \mathrm{Nm}^{-2}$, density of mercury $=1.36 \times 10^{4} \mathrm{kgm}^{-3}, \mathrm{~g}=10 \mathrm{~ms}^{-2}, \pi=\frac{22}{7}$)
Sol. 177
$\mathrm{P}=\mathrm{P}_{0}+\rho \mathrm{gh}$
$\mathrm{F}=\mathrm{P}_{0} \mathrm{~A}+\rho \mathrm{ghA}=\frac{22}{7} \times 4 \times 10^{-4}\left(10^{5}+1.36 \times 10^{4} \times 10 \times \frac{30}{100}\right)$
$\Rightarrow \mathrm{F}=\frac{88}{7} \times 10^{-4}\left(10^{5}+0.408 \times 10^{5}\right)$
$=\frac{88}{7} \times 10 \times 1.408=177$
53. The displacement of a particle executing SHM is given by $x=10 \sin \left(\omega t+\frac{\pi}{3}\right) \mathrm{m}$. The time period of motion is 3.14 s . The velocity of the particle at $\mathrm{t}=0$ is \qquad m / s.
Sol. 10
$\mathrm{x}=10 \sin \left(\omega \mathrm{t}+\frac{\pi}{3}\right)$
$\omega=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{3.14}=2 \mathrm{rad} / \mathrm{s}$
at $\mathrm{t}=0, \mathrm{x}=10 \sin \frac{\pi}{3}=5 \sqrt{3}$
now $v=\omega \sqrt{\left(\mathrm{A}^{2}-\mathrm{x}^{2}\right)}$
$=2 \sqrt{10^{2}-(5 \sqrt{3})^{2}}$
$=2 \sqrt{100-75}=10 \mathrm{~m} / \mathrm{s}$
54. A parallel plate capacitor of capacitance 12.5 pF is charged by a battery connected between its plates to potential difference of 12.0 V . The battery is now disconnected and a dielectric slab $\left(\epsilon_{\mathrm{r}}=6\right)$ is inserted between the plates. The change in its potential energy after inserting the dielectric slab is \qquad $\times 10^{-12} \mathrm{~J}$.
Sol. 750
$\mathrm{v}_{0}=\frac{1}{2} \times 12.5 \times 10^{-12} \times 144$
$=900 \times 10^{-12} \mathrm{~J}$
$\mathrm{v}=\frac{\mathrm{v}_{0}}{\mathrm{~K}}=\frac{900}{6} \times 10^{-12}=150 \times 10^{-12} \mathrm{~J}$
$\Delta \mathrm{v}=(900-150) \times 10^{-12} \mathrm{~J}$
$=750 \times 10^{-12} \mathrm{~J}$
55. In a system two particles of masses $m_{1}=3 \mathrm{~kg}$ and $m_{2}=2 \mathrm{~kg}$ are placed at certain distance from each other. The particle of mass m_{1} is moved towards the center of mass of the system through a distance 2 cm . In order to keep the center of mass of the system at the original position. The particle of mass m_{2} should move towards the center of mass by the distance \qquad cm .
Sol. 3
$\mathrm{m}_{1} \mathrm{X}_{1}=\mathrm{m}_{2} \mathrm{X}_{2}$
$3 \times 2=2 \times \mathrm{x}_{2}$
$\mathrm{x}_{2}=3 \mathrm{~cm}$
56. A light ray is incident on a glass slab of thickness $4 \sqrt{3} \mathrm{~cm}$ and refractive index $\sqrt{2}$. The angle of incidence is equal to the critical angle for the glass slab with air. The lateral displacement of ray after passing through glass slab is \qquad $\mathrm{cm} .\left(\right.$ Given $\left.\sin 15^{\circ}=0.25\right)$

Sol. 2

$\sin i=\sqrt{2} \sin r$
$\sin \mathrm{i}=\sin \mathrm{c}=\sqrt{2} \sin \mathrm{r}$
$\Rightarrow \frac{1}{\sqrt{2}}=\sqrt{2} \sin r$
$\Rightarrow \mathrm{r}=30^{\circ}$
and $\mathrm{i}=\mathrm{C}=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}$
Now, $\Delta \mathrm{x}=\mathrm{t} \sec 30^{\circ} \sin 15^{\circ}$

$=4 \sqrt{3} \times \frac{2}{\sqrt{3}} \times \frac{1}{4}$
$=2 \mathrm{~cm}$
57. The disinteration energy Q for the nuclear fission of ${ }^{235} U \rightarrow{ }^{140} \mathrm{Ce}+{ }^{94} \mathrm{Zr}+\mathrm{n}$ is \qquad MeV .
Given atomic masses of ${ }^{235} \mathrm{U}: 235.0439 \mathrm{u} ;{ }^{140} \mathrm{Ce} ; 139.9054 \mathrm{u}$,
${ }^{94} \mathrm{Zr}$: $93.9063 \mathrm{u} ; \mathrm{n}: 1.0086 \mathrm{u}$,
Value of $c^{2}=931 \mathrm{MeV} / \mathrm{u}$.

Sol. 208

$\Delta \mathrm{m}=\{235.0439-(139.9054+93.9063+1.0086)\} \mathrm{u}$
$=0.2236 \mathrm{u}$
$\theta=\Delta \mathrm{mc}^{2}=0.2236 \times 931 \mathrm{Mev}$
$\simeq 208.17 \mathrm{Mev}$
$\approx 208 \mathrm{Mev}$
58. Two parallel long current carrying wire separated by a distance 2 r are shown in the figure. The ratio of magnetic field at A to the magnetic field produced at C is $\frac{x}{7}$. The value of x is \qquad -

Sol. 5

$$
\mathrm{B}_{\mathrm{A}}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}+\frac{\mu_{0} \cdot 2 \mathrm{I}}{2 \pi \cdot 3 \mathrm{r}}
$$

$$
=\frac{5}{3} \cdot \frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}=\frac{5 \mu_{0} \mathrm{I}}{6 \pi \mathrm{r}}
$$

$$
B_{C}=-\frac{\mu_{0} I}{2 \pi \times 3 r}-\frac{\mu_{0} \cdot 2 I}{2 \pi r}
$$

$$
\Rightarrow \mathrm{B}_{\mathrm{C}}=-\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}-\frac{7}{3}
$$

$$
\Rightarrow \frac{\left|\mathrm{B}_{\mathrm{A}}\right|}{\left|\mathrm{B}_{\mathrm{C}}\right|}=\frac{5}{7}
$$

59. A bus moving along a straight highway with speed of $72 \mathrm{~km} / \mathrm{h}$ is brought to halt within 4 s after applying the brakes. The distance travelled by the bus during this time (Assume the retardation is uniform) is \qquad m .
Sol. 40
$u=72 \times \frac{5}{18}=20 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=0$
$\mathrm{t}=4$
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$\Rightarrow 0=20+\mathrm{a} \times 4$
$\Rightarrow \mathrm{a}=-5 \mathrm{~m} / \mathrm{s}^{2}$
Now, $v^{2}=u^{2}+2$ as
$\Rightarrow 0=400-10 . \mathrm{x}$
$\mathrm{x}=40 \mathrm{~m}$
60. A rod of length 60 cm rotates with a uniform angular velocity 20 rads $^{-1}$ about its perpendicular bisector, in a uniform magnetic field 0.5 T . The direction of magnetic field is parallel to the axis of rotation. The potential difference between the two ends of the rod is \qquad V.

Sol. 0

$\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{C}}=\frac{\mathrm{B}_{0} \omega \ell^{2}}{8}$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{C}}=\frac{\mathrm{B}_{0} \omega \ell^{2}}{8}$
$\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=0$

GIVE YOUR JEE ADVANCED 2024 PREPRATION A FINAL CHECK

95\%ile to 97.99\%ile

Offline : 50\% scholarship
Online : 100\% scholarship

98\%ile to 98.99\%ile
Offline : 100% scholarship
Online : 100\% scholarship

99\%ile or ABOVE VICTORY
 BATCH

99.99\%ile will be provided with free residential facilities (Hostel+Food)

Continuing to keep the pledge of imparting education for the last 17 Years

$65136+$ simem 12142 3258417875

Most Promising RANKS
Produced by MOTION Faculties

NEET / AlIMS

JEE MAIN+ADVANCED

Nation's Best SELECTION
 Percentage (\%) Ratio

Student Qualified in NEET
(2023)

6492/7084 = 91.64\% (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANCED
(2023)
$2747 / 5182=53.01 \%$
(2022)

1756/4818 = 36.45\%

Student Qualified in JEE MAIN
(2024-First Attemp)
6495/10592 = 61.31\%
(2023)
$5993 / 8497=70.53 \%$
(2022)

4818/6653 $=72.41 \%$

