JEE MAIN 2024 asssonz Paper with Solution

PHYSICS | 08 ${ }^{\text {th }}$ April 2024 _ Shift-2

Motílon

PRE-ENGINEERING PRE-MEDICAL FOUNDATION (Class 6th to 10th)
JEE (Main+Advanced)
NEET
Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.)
Toll Free : 18002121799 | www.motion.ac.in | Mail : info@motion.ac.in

MOTION LEARNING APP

Scan Code for Demo Class

SECTION - A

31. A thin circular disc of mass M and radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with angular velocity ω. If another disc of same dimensions but of mass $\mathrm{M} / 2$ is placed gently on the first disc co-axially, then the new angular velocity of the system is:
(1) $\frac{4}{5} \omega$
(2) $\frac{2}{3} \omega$
(3) $\frac{5}{4} \omega$
(4) $\frac{3}{2} \omega$

Sol. 2
Using angular momentum conservation
$L_{i}=L_{f}$
$\frac{\mathrm{MR}^{2}}{2} \omega=\left(\frac{\mathrm{MR}^{2}}{2}+\frac{\mathrm{M} / 2^{2}}{2}\right) \omega^{\prime}$
$\frac{\mathrm{MR}^{2}}{2} \omega=\frac{3 \mathrm{MR}^{2}}{4} \omega^{\prime}$
$\omega^{\prime}=\frac{2 \omega}{3}$

32. Water boils in an electric kettle in 20 minutes after being switched on. Using the same main supply, the length of the heating element should be \qquad to \qquad times of its initial length if the water is to be boiled in 15 minutes.
(1) increased, $4 / 3$
(2) increased, $3 / 4$
(3) decreased, $3 / 4$
(4) decreased, $4 / 3$

Sol. 3
$P=\frac{V^{2}}{R}, R=\rho \times \frac{L}{A}$
$\mathrm{P} \propto \frac{1}{\mathrm{~L}}$
$\mathrm{P}_{1} \times \mathrm{t}_{1}=\mathrm{P}_{2} \times \mathrm{t}_{2}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}=\frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}}=\frac{15}{20}$
$\mathrm{L}_{2}=\frac{3}{4} \mathrm{~L}_{1}$
33. A block is simply released from the top of an inclined plane as shown in the figure above. The maximum compression in the spring when the block hits the spring is :

(1) 1 m
(2) $\sqrt{6} \mathrm{~m}$
(3) $\sqrt{5} \mathrm{~m}$
(4) 2 m

Sol. 4
$\sin 30=\frac{h}{10}$
$h=5$
using WET
at max $^{\mathrm{m}}$ compression $\mathrm{v}=0$
$\mathrm{W}_{\text {all }}=\Delta \mathrm{KE}$
$\mathrm{W}_{\text {org }}+\mathrm{W}_{\text {friction }}+\mathrm{W}_{\text {ext }}=0$
$\operatorname{mgh}+\frac{1}{2} \mathrm{k} \mathrm{x}^{2}-\mathrm{fq}(2+\mathrm{x})=0$
$5 \times 10 \times 5+\frac{1}{2} \times 100 \times \mathrm{x}^{2}-\left[\frac{1}{2} \times 5 \times 10(2+\mathrm{x})\right]=0$
$250+50 x^{2}-[50+25 \mathrm{x}]=0$
$250+50 x^{2}-50-25 x=0$
$8 \mathrm{x}+2 \mathrm{x}^{2}-\mathrm{x}=0$
$2 x^{2}-x+8=0$
$\mathrm{x}=2$
34. The angle of projection for a projectile to have same horizontal range and maximum height is :
(1) $\tan ^{-1}(2)$
(2) $\tan ^{-1}\left(\frac{1}{2}\right)$
(3) $\tan ^{-1}(4)$
(4) $\tan ^{-1}\left(\frac{1}{4}\right)$

Sol. 3
$\mathrm{H}_{\text {max }}=$ Range
$\frac{u^{2} \sin 2 \theta}{g}=\frac{u^{2} \sin ^{2} \theta}{2 g}$
$4 \sin \theta \cos \theta=\sin ^{2} \theta$
$\operatorname{Tan} \theta=4$
$\theta=\tan ^{-1}(4)$
35. A capacitor has air as dielectric medium and two conducting plates of area $12 \mathrm{~cm}^{2}$ and they are 0.6 cm apart. When a slab of dielectric having area $12 \mathrm{~cm}^{2}$ and 0.6 cm thickness is inserted between the plates, one of the conducting plates has to be moved by 0.2 cm to keep the capacitance same as in previous case. The dielectric constant of the slab is : $\left(\right.$ Given $\left.\epsilon_{0}=8.834 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)$
(1) 1
(2) 0.66
(3) 1.33
(4) 1.50

Sol. 4
Case (i)
Case (ii)

0.6 m

Expression for parallel plate capacitance
$C=\frac{\epsilon_{0} A}{d}$
For partially filled capacity
$C=\frac{\epsilon_{0} A}{d-t+t / k}$
in both the cases value of d is different
for case (i)
$\mathrm{C}_{1}=\frac{\in_{\mathrm{o}} \mathrm{A}}{0.6}$
for case (ii) $\mathrm{C}_{2}=\frac{\epsilon_{o} \mathrm{~A}}{0.8-0.6+\frac{0.6}{\mathrm{~K}}}$
Now $\mathrm{C}_{1}=\mathrm{C}_{2}$
$\frac{\in_{\mathrm{o}} \mathrm{A}}{0.6}=\frac{\in_{\mathrm{o}} \mathrm{A}}{0.2+\frac{0.6}{\mathrm{~K}}}$
$0.6=0.2+\frac{0.6}{\mathrm{~K}} \Rightarrow \mathrm{~K}=\frac{3}{2}$
36. A cube of ice floats partly in water and partly in kerosene oil. The ratio of volume of ice immersed in water to that in kerosene oil (specific gravity of Kerosene oil $=0.8$, specific gravity of ice $=0.9$):

(1) $5: 4$
(2) $9: 10$
(3) $1: 1$
(4) $8: 9$

Sol. 3
Buoyancy force balance weight at equilibrium :-
$\mathrm{F}_{\mathrm{B}_{1}}+\mathrm{F}_{\mathrm{B}_{2}}=\mathrm{mg}$
We know specified gravity $=\frac{\rho_{\text {substance }}}{\rho_{\mathrm{H}_{2} \mathrm{O}}}\left\langle\begin{array}{c}\rho \text { ker osene }=0.8 \rho_{\mathrm{w}} \\ \rho_{\text {ice }}=0.9 \rho_{\mathrm{w}}\end{array}\right.$
$\rho_{\mathrm{k}} \mathrm{gv}_{1}+\rho_{\mathrm{w}} \mathrm{g} \mathrm{v}_{2}=\rho_{\text {ice }}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \mathrm{g}$
$\rho_{\mathrm{k}} \mathrm{V}_{1}+\rho_{\mathrm{w}} \mathrm{V}_{2}=\rho_{\text {ice }}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)$
$0.8 \rho_{\mathrm{w}} \mathrm{v}_{1}+\rho_{\mathrm{w}} \mathrm{v}_{2}=0.9 \rho_{\mathrm{w}} \mathrm{v}_{1}+0.9 \rho_{\mathrm{w}} \mathrm{v}_{2}$
$\mathrm{v}_{2}-0.9 \mathrm{v}_{2}=0.9 \mathrm{v}_{1}-0.8 \mathrm{v}_{1}$
$0.1 \mathrm{v}_{2}=0.1 \mathrm{v}_{1}$
$\mathrm{v}_{2}=\mathrm{v}_{1}$
So ratio $\Rightarrow 1: 1$
37. If M_{o} is the mass of isotope ${ }_{5}^{12} B, M_{P}$ and M_{n} are the masses of proton and neutron, then nuclear binding energy of isotope is :
(1) $\left(\mathrm{M}_{\mathrm{o}}-5 \mathrm{M}_{\mathrm{p}}-7 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}$
(2) $\left(\mathrm{M}_{\mathrm{o}}-12 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}$
(3) $\left(\mathrm{M}_{\mathrm{o}}-5 \mathrm{M}_{\mathrm{p}}\right) \mathrm{C}^{2}$
(4) $\left(5 M_{p}+7 M_{n}-M_{o}\right) C^{2}$

Sol. 4
${ }_{5}^{12} \mathrm{~B} \longrightarrow 5$ proton +7 neutron
$\left(5 \mathrm{mp}+7 \mathrm{~m}_{\mathrm{n}}-\mathrm{m}_{\mathrm{o}}\right) \mathrm{C}^{2}=\mathrm{BE}$
38. If \in_{o} is the permittivity of free space and E is the electric field, then $\in_{o} E^{2}$ has the dimensions :
(1) $\left[\mathrm{M}^{0} \mathrm{~L}^{-2} \mathrm{~T} \mathrm{~A}\right]$
(2) $\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]$
(3) $\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$
(4) $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$

Sol. 2

Energy per unit volume $=\frac{1}{2} \epsilon_{0} E^{2}$
$\frac{\mathrm{J}}{\mathrm{m}^{3}}=\frac{1}{2} \epsilon_{0} \mathrm{E}^{2}$
$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]=\epsilon_{0} \mathrm{E}^{2}$
39. In a hypothetical fission reaction
${ }_{92} \mathrm{X}^{236} \rightarrow{ }_{56} \mathrm{Y}^{141}+{ }_{36} \mathrm{Z}^{92}+3 \mathrm{R}$
The identity of emitted particles (R) is :
(1) γ-radiations
(2) Electron
(3) Neutron
(4) Proton

Sol. 3

Z in $\mathrm{LHS}=92, \mathrm{Z}$ in $\mathrm{RHS}=56+36=92$
A in LHS $=236$
A in RHS $=141+92=233$
So 3 neutrons are released
40. A long straight wire of radius a carries a steady current I. The current is uniformly distributed across its cross section. The ratio of the magnetic field at $\frac{a}{2}$ and 2 a from axis of the wire is :
(1) $1: 1$
(2) $3: 4$
(3) $1: 4$
(4) $4: 1$

Sol. 1

Magnetic field inside wire
Binside $=\frac{\mu_{0} \mathrm{Jr}}{2}=\frac{\mu_{\mathrm{o}} \mathrm{Ir}}{2 \mathrm{~A}}=\frac{\mu_{\mathrm{o}} \mathrm{Ir}}{2 \pi \mathrm{a}^{2}}$
$r \rightarrow a / 2$
Biside $=\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a}}$
Magnetic field outside $\left(B_{2}\right)=\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}$

$$
\begin{aligned}
& =\frac{\mu_{\mathrm{o}} \mathrm{i}}{2 \pi(2 \mathrm{a})} \\
& =\frac{\mu_{\mathrm{o}} \mathrm{i}}{4 \pi \mathrm{a}}
\end{aligned}
$$

Biside $=\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a}}$
So $\mathrm{B}_{1}=\mathrm{B}_{2} \Rightarrow 1: 1$
41. Least count of a vernier caliper is $\frac{1}{20 \mathrm{~N}} \mathrm{~cm}$. The value of one division on the main scale is 1 mm . Then the number of divisions of main scale that coincide with N divisions of vernier scale is :
(1) $\left(\frac{2 \mathrm{~N}-1}{2 \mathrm{~N}}\right)$
(2) $(2 \mathrm{~N}-1)$
(3) $\left(\frac{2 \mathrm{~N}-1}{2}\right)$
(4) $\left(\frac{2 \mathrm{~N}-1}{20 \mathrm{~N}}\right)$

Sol. 3
(i) $\mathrm{LC}=1 \mathrm{MSD}-1 \mathrm{VSD}$
$\frac{1}{20 \mathrm{~N}} \times 10 \mathrm{~mm}=1 \mathrm{~mm}-1 \mathrm{VSD}$
$1 \mathrm{VSD}=\left(1-\frac{1}{2 \mathrm{~N}}\right) \mathrm{mm}=\left(\frac{2 \mathrm{~N}-1}{2 \mathrm{~N}}\right) \mathrm{mm}$
(ii) $\mathrm{N}(\mathrm{VSD})=\mathrm{x}$ MSD
$\mathrm{N}\left(\frac{2 \mathrm{~N}-1}{2 \mathrm{~N}}\right) \mathrm{mm}=\mathrm{x}(1 \mathrm{~mm})$
$\mathrm{x}=\frac{2 \mathrm{~N}-1}{2}$
42. A diatomic gas $(\gamma=1.4)$ does 100 J of work in an isobaric expansion. The heat given to the gas is :
(1) 150 J
(2) 250 J
(3) 490 J
(4) 350 J

Sol. 4

Isobaric, diatonic, work done $=100 \mathrm{~J}$
$\Delta \mathrm{Q}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}$
$=n\left(\frac{7 \mathrm{R}}{2}\right) \Delta \mathrm{T}\binom{\mathrm{pv}=\mathrm{nRT}}{\mathrm{p} \Delta \mathrm{y}=\mathrm{nr} \Delta \mathrm{T}=$ work done }
$\Delta \mathrm{Q}=\frac{7}{2} n \mathrm{R} \Delta \mathrm{T}$
$\Delta \mathrm{Q}=\frac{7}{2}$ work done
$\Delta \mathrm{Q}=\frac{7}{2} \times 100$
$\Delta \mathrm{Q}=\frac{700}{2}$
$\Delta \mathrm{Q}=350 \mathrm{~J}$
Heat we need to give to the gas.
43. A given object takes n times the time to slide down 45° rough inclined plane as it takes the time to slide down an identical perfectly smooth 45° inclined plane. The coefficient of kinetic friction between the object and the surface of inclined plane is:
(1) $\sqrt{1-\mathrm{n}^{2}}$
(2) $\sqrt{1-\frac{1}{n^{2}}}$
(3) $1-n^{2}$
(4) $1-\frac{1}{n^{2}}$

Sol. 4

$$
\begin{equation*}
\mathrm{t}_{1}=\mathrm{nt}_{2} \tag{1}
\end{equation*}
$$

$S_{1}=0+\frac{1}{2} \mathrm{a}_{1} \mathrm{t}^{2}$
lets find a_{1}
$m g \sin \theta-\mu m g \cos \theta=m a_{1}$
$\mathrm{a}_{1}=g \sin \theta-\mu \mathrm{g} \cos \theta$

Have $S_{2}=0+\frac{1}{2} \mathrm{a}_{2} \mathrm{t}^{2}$
Now no friction so
$\mathrm{a}_{2}=\mathrm{g} \sin \theta$
given that $S_{1}=S_{2}$
$\frac{1}{2} a_{1} t_{1}{ }^{2}=\frac{1}{2} a_{2} t_{2}{ }^{2}$
$\left(\frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}\right)^{2}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}$
$\mathrm{n}^{2}=\frac{\mathrm{g} \sin \theta}{\mathrm{g} \sin \theta-\mu \mathrm{g} \cos \theta}$
$n^{2}=\frac{1}{1-\mu \times 1}$
$[\because \theta=45$ given $]$
$n^{2}=\frac{1}{1-\mu}$
$1-\mu=\frac{1}{\mathrm{n}^{2}} \Rightarrow \mu=1-\frac{1}{\mathrm{n}^{2}}$
44. A coil of negligible resistance is connected in series with 90Ω resistor across $120 \mathrm{~V}, 60 \mathrm{~Hz}$ supply. A voltmeter reads 36 V across resistance. Inductance of the coil is :
(1) 0.76 H
(2) 0.286 H
(3) 2.86 H
(4) 0.91 H

Sol. 1
$36=\mathrm{I}_{\mathrm{rms}} \mathrm{R}$
$36=\frac{120}{\sqrt{\mathrm{x}_{\mathrm{L}}^{2}+\mathrm{R}^{2}}} \times \mathrm{R}$
$\mathrm{R}=90 \Omega \Rightarrow 36=\frac{120 \times 90}{\sqrt{\mathrm{x}_{\mathrm{L}}^{2}+90^{2}}}$
$\mathrm{X}_{\mathrm{L}}=286.18$
$\omega \mathrm{L}=286.18$
$\mathrm{L}=\frac{286.18}{376.8}$

$=0.76 \mathrm{H}$
45. There are 100 divisions on the circular scale of a screw gauge of pitch 1 mm . With no measuring quantity in between the jaws, the zero of the circular scale lies 5 divisions below the reference line. The diameter of a wire is then measured using this screw gauge. It is found that 4 linear scale divisions are clearly visible while 60 divisions on circular scale coincide with the reference line. The diameter of the wire is :
(1) 4.60 mm
(2) 3.35 mm
(3) 4.65 mm
(4) 4.55 mm

Sol. 4
$\mathrm{P}=1 \mathrm{~mm}, \mathrm{~N}=100$
least count $\mathrm{C}=\frac{\mathrm{P}}{\mathrm{N}}=\frac{1 \mathrm{~mm}}{100}$
$\mathrm{C}=0.01 \mathrm{~mm}$
The instrument has a positive zero error
$\mathrm{e}=\mathrm{NC}=5 \times 0.01$
$=0.05 \mathrm{~mm}$
Main scale reading is $4 \times(\mathrm{mm})=4 \mathrm{~mm}$
Circular scale reading is $60 \times 0.01=0.6 \mathrm{~mm}$
Observed reading is $\mathrm{R}_{\mathrm{o}}=4+0.6$

$$
=4.6 \mathrm{~mm}
$$

So True reading $=\mathrm{R}_{\mathrm{o}}-\mathrm{e}$
$=4.6-0.05$
$=4.55 \mathrm{~mm}$
46. The position of the image formed by the combination of lenses is:

(1) 30 cm (left of third lens)
(2) 15 cm (right of second lens)
(3) 15 cm (left of second lens)
(4) 30 cm (right of third lens)

Sol. 4

Here we will use lens formula three times, for lens 1
$\mathrm{u}=-30, \mathrm{f}=10$
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\frac{1}{\mathrm{v}_{1}}-\frac{1}{-30}=\frac{1}{10} \Rightarrow \mathrm{v}_{1}=15 \mathrm{~cm}$
For $2^{\text {nd }}$ lens $\mathrm{u}=10, \mathrm{f}=-10$
$\mathrm{v}_{2} \rightarrow \infty$
$\mathrm{u}_{3} \rightarrow-\infty$
$\mathrm{v}_{3} \rightarrow+30 \mathrm{~cm}$
47. A proton and an electron have the same de Broglie wavelength. If K_{p} and K_{e} be the kinetic energies of proton and electron respectively, then choose the correct relation :
(1) $K_{p}=K_{e}{ }^{2}$
(2) $K_{p}=K_{e}$
(3) $K_{p}>K_{e}$
(4) $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{e}}$

Sol. 4
Wave length of e^{-}and proton are same
$K E=\frac{\mathrm{P}^{2}}{2 \mathrm{~m}}$
$\mathrm{KE} \propto \frac{1}{\mathrm{~m}}$
$\frac{K E_{e}^{e}}{K E_{p}}=\frac{M_{p}}{M_{e}}$
48. A plane progressive wave is given by $\mathrm{y}=2 \cos 2 \pi(330 \mathrm{t}-\mathrm{x}) \mathrm{m}$. The frequency of the wave is :
(1) 340 Hz
(2) 165 Hz
(3) 330 Hz
(4) 660 Hz

Sol. 3
$\mathrm{y}=2 \cos 2 \pi(330 \mathrm{t}-\mathrm{x}) \mathrm{m}$
$\omega=330 \times 2 \pi$
$\omega=660 \pi$
we know \Rightarrow
$\omega=2 \pi \mathrm{f}$
$\mathrm{f}=\frac{\omega}{2 \pi}$
$\mathrm{f}=\frac{660 \pi}{2 \pi}$
$\mathrm{f}=330 \mathrm{~Hz}$
49. Two satellite A and B go round a planet in circular orbits having radii $4 R$ and R respectively. If the speed of A is 3 v , the speed of B will be:
(1) 6 v
(2) 12 v
(3) $\frac{4}{3} v$
(4) 3 v

Sol. 1
$\mathrm{V}_{\mathrm{o}}=\sqrt{\frac{\mathrm{GM}}{4 \mathrm{R}}}=3 \mathrm{v}$
$\Rightarrow \frac{1}{2} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}=3 \mathrm{v}$
$=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}=6 \mathrm{v}$
Now Asked for
$\mathrm{V}_{0}^{1}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}$
Form (1)
$\mathrm{V}_{0}^{1}=6 \mathrm{~V}$
50. Given below are two statements :

Statement (I): The mean free path of gas molecules is inversely proportional to square of molecular diameter.
Statement (II): Average kinetic energy of gas molecules is directly proportional to absolute temperature of gas.
In the light of the above statements, choose the correct answer from the options given below :
(1) Statement I is false but Statement II is true
(2) Both Statement I and Statement II are true
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are false

Sol. 2

State -1 : Mean free path $\lambda=\frac{1}{\sqrt{2} \pi \mathrm{~d}^{2} \mathrm{n}}$
using $\mathrm{d}=2 \mathrm{r}$
$\lambda=\frac{1}{4 \sqrt{2} \pi r^{2} n}$
$\lambda \propto \frac{1}{\mathrm{r}^{2}}$
State $-2: E=\frac{3}{2} k T$
$\mathrm{E} \propto \mathrm{T}$

SECTION - B

51. An alternating emf $E=110 \sqrt{2} \sin 100 t$ volt is applied to a capacitor of $2 \mu \mathrm{~F}$, the rms value of current in the circuit is \qquad mA .
Sol. 22
$\mathrm{E}_{\mathrm{rms}}=\frac{\mathrm{E}_{0}}{\sqrt{2}}=\frac{110 \sqrt{2}}{\sqrt{2}}$
$\mathrm{E}_{\mathrm{rms}}=110 \mathrm{v}$
$I_{\text {rms }}=\frac{E_{\text {rms }}}{X_{c}}=E_{\text {rms }} . \omega \mathrm{c}$
$=110 \times 100 \times 2 \times 10^{-6}$

$=22 \times 10^{-3} \mathrm{~A}$
52. The coercivity of a magnet is $5 \times 10^{3} \mathrm{~A} / \mathrm{m}$. The amount of current required to be passed in a solenoid of length 30 cm and the number of turns 150 , so that the magnet gets demagnetised when inside the solenoid is \qquad A.

Sol. 10

Length of solenoid $(\ell)=30 \mathrm{~cm}$
No. of turns $(n)=150$
$\mathrm{H}=5 \times 10^{3} \mathrm{~A} / \mathrm{m}$
We know $\mathrm{n}=\frac{\mathrm{N}}{\mathrm{I}}$
$I=\frac{N}{n}$
$\mathrm{I}=\frac{5 \times 10^{3} \times 0.3}{150}$
$I=\frac{1500}{150}$
$\mathrm{I}=10 \mathrm{~A}$
53. Small water droplets of radius 0.01 mm are formed in the upper atmosphere and falling with a terminal velocity of $10 \mathrm{~cm} / \mathrm{s}$. Due to condensation, if 8 such droplets are coalesced and formed a larger drop, the new terminal velocity will be \qquad cm / s.
Sol. 40
$\mathrm{V}_{\mathrm{t}}=\frac{2}{9 \mathrm{~m}} \operatorname{gr}^{2}(\rho-\sigma)$
$\mathrm{Vt} \propto \mathrm{r}^{2}$
Radius double so terminal velocity 4 times
54. Two slits are 1 mm apart and the screen is located 1 m away from the slits. A light of wavelength 500 nm is used. The width of each slit to obtain 10 maxima of the double slit pattern within the central maximum of the single slit pattern is \qquad $\times 10^{-4} \mathrm{~m}$.

Sol. 2

$$
y=\frac{10 \lambda D}{d}
$$

$$
\beta=\frac{D \lambda}{d}
$$

$$
\frac{2 \lambda \mathrm{D}}{\mathrm{a}}=10\left[\frac{\lambda \mathrm{D}}{\mathrm{~d}}\right]
$$

$$
a=\frac{d}{5}
$$

$$
=\frac{10 \times 10^{-4}}{5}=2 \times 10^{-4} \mathrm{~m}
$$

55. If the net electric field at point P along Y axis is zero, then the ratio of $\left|\frac{q_{2}}{q_{3}}\right|$ is $\frac{8}{5 \sqrt{x}}$, where $x=$ \qquad -.

Sol. 5

$\mathrm{E}_{2} \operatorname{Cos} \theta_{1}=\frac{\mathrm{kQ}_{2}}{\mathrm{r}^{2}} \cos \theta_{1}$
$=\frac{\mathrm{kQ}_{2}}{20} \times \frac{4}{\sqrt{20}}$
$=\frac{\mathrm{kQ}_{2}}{5 \sqrt{20}}$
$\Rightarrow \mathrm{E}_{3} \cos 37$
$=\frac{\mathrm{kQ}_{3}}{\mathrm{r}^{2}} \cos 37$
$=\frac{\mathrm{kQ}_{3}}{25} \times \frac{4}{5}$
$=\frac{4 \mathrm{kQ}_{3}}{125}$
Equation (1) - (2)
$\frac{\mathrm{kQ}_{2}}{5 \sqrt{20}}=\frac{4 \mathrm{kQ}_{3}}{125}$
$\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{3}}=\frac{8}{5 \sqrt{5}}$

56. A heater is designed to operate with a power of 1000 W in a 100 V line. It is connected in combination with a resistance of 10Ω and a resistance R , to a 100 V mains as shown in figure. For the heater to operate at 62.5 W , the value of R should be \qquad Ω.

Sol. 5
$\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
$62.5=\frac{\mathrm{V}^{2}}{10}$
$\mathrm{V}=25 \mathrm{~V}$
Rated power
$\mathrm{P}_{0}=\frac{\mathrm{V}_{0}^{2}}{\mathrm{R}}$
$\mathrm{R}=\frac{\mathrm{V}_{0}^{2}}{\mathrm{P}_{0}}$

$\mathrm{R}=\frac{(100)^{2}}{1000}$
$\mathrm{R}=10 \Omega$
$=\frac{\frac{10}{10 \mathrm{R}}}{10+\mathrm{R}}=\frac{75}{25}($ Resistance ratio $=$ Voltage ratio $)$
$10=2 R$
$\mathrm{R}=5 \Omega$
57. An object of mass 0.2 kg executes simple harmonic motion along x axis with frequency of $\left(\frac{25}{\pi}\right) \mathrm{Hz}$. At the position $\mathrm{x}=0.04 \mathrm{~m}$ the object has kinetic energy 0.5 J and potential energy 0.4 J . The amplitude of oscillation is \qquad cm .
Sol. 6
$\frac{1}{2} k(0.04)^{2}=0.4$
$\frac{1}{2} \mathrm{kA}^{2}=0.4+0.5$
$\left(\frac{0.04}{\mathrm{~A}}\right)^{2}=\frac{4}{9}$
$\left(\frac{0.04}{\mathrm{~A}}\right)=\frac{2}{3}$
$2 \mathrm{~A}=.12$
$\mathrm{A}=0.06 \mathrm{~m}$
$\mathrm{A}=6 \mathrm{~cm}$
58. A circular table is rotating with an angular velocity of $\omega \mathrm{rad} / \mathrm{s}$ about its axis (see figure). There is a smooth groove along a radial direction on the table. A steel ball is gently placed at a distance of 1 m on the groove. All the surfaces are smooth. If the radius of the table is 3 m , the radial velocity of the ball w.r.t. the table at the time ball leaves the table is $\mathrm{x} \sqrt{2} \omega \mathrm{~m} / \mathrm{s}$, where the value of x is \qquad .

Sol. 2
at some instant of time particle is at x (location A)
$m \omega^{2} x=$ force
Now $\operatorname{acc}^{\mathrm{n}}=\frac{\mathrm{F}}{\mathrm{m}}$
$=\frac{m \omega^{2} x}{m}$
$\omega^{2} \mathrm{x}=\mathrm{V} \frac{\mathrm{dx}}{\mathrm{dx}}$
$\omega^{2} \int_{1}^{3} \mathrm{xdx}=\int_{0}^{v} \mathrm{~V} d \mathrm{x}$

$\omega^{2}\left[\frac{\mathrm{x}^{2}}{2}\right]_{1}^{3}=\left[\frac{\mathrm{V}^{2}}{2}\right]_{0}^{\mathrm{V}}$
$\omega^{2} 8=V^{2}$
$\mathrm{V}=2 \sqrt{2} \omega$
59. A body of mass M thrown horizontally with velocity v from the top of the tower of height H touches the ground at a distance of 100 m from the foot of the tower. A body of mass 2 M thrown at a velocity $\frac{\mathrm{v}}{2}$ from the top of the tower of height 4 H will touch the ground at a distance of \qquad m.

Sol. 100
(i)

$\begin{array}{ll}S_{x}=U_{x} t+0 & R=100 m \\ 100=V t & \\ 100=V \sqrt{\frac{2 h}{g}} & \ldots(1)\end{array}$

$S_{x}=U_{x} t=0$
$\mathrm{R}=\frac{\mathrm{V}}{2} \cdot \sqrt{\frac{2(4 \mathrm{~h})}{\mathrm{g}}}$
$\mathrm{R}=\frac{\mathrm{V}}{2} 2 \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$
$\mathrm{R}=\mathrm{V} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$
Same as equation (1) so $R=100$
60. A potential divider circuit is connected with a dc source of 20 V , a light emitting diode of glow in voltage 1.8 V and a zener diode of breakdown voltage of 3.2 V . The length (PR) of the resistive wire is 20 cm . The minimum length of PQ to just glow the LED is \qquad cm.

Sol. 5

$\mathrm{V}_{\mathrm{PQ}}=3.2+1.8$
$\mathrm{V}_{\mathrm{PQ}}=5 \mathrm{~V}$
And
$\mathrm{V}_{\mathrm{PR}}=20 \mathrm{~V}$ (given)
Now $\frac{20 \mathrm{~V}}{20 \mathrm{~cm}} \mathrm{x} \ell=5 \mathrm{~V}$
$\ell=5 \mathrm{~cm}$

GIVE YOUR JEE ADVANCED 2024 PREPRATION A FINAL CHECK

95\%ile to 97.99\%ile

Offline : 50\% scholarship
Online : 100\% scholarship

98\%ile to 98.99\%ile
Offline : 100% scholarship
Online : 100\% scholarship

99\%ile or ABOVE VICTORY
 BATCH

99.99\%ile will be provided with free residential facilities (Hostel+Food)

Continuing to keep the pledge of imparting education for the last 17 Years

$65136+$ simem 12142 3258417875

Most Promising RANKS
Produced by MOTION Faculties

NEET / AlIMS

JEE MAIN+ADVANCED

Nation's Best SELECTION
 Percentage (\%) Ratio

Student Qualified in NEET
(2023)

6492/7084 = 91.64\% (2022)

4837/5356 = 90.31\%

Student Qualified
in JEE ADVANCED
(2023)
$2747 / 5182=53.01 \%$
(2022)

1756/4818 = 36.45\%

Student Qualified in JEE MAIN
(2024-First Attemp)
6495/10592 = 61.31\%
(2023)
$5993 / 8497=70.53 \%$
(2022)

4818/6653 $=72.41 \%$

