1 - FUNDAMENTAL OF MATHEMATICS

WORKSHEET

1. State weather the following collections is a set or not?
(i) The collection of natural numbers between 2 and 20
(ii) The collection of numbers which satisfy the equation $x^{2}-5 x+6=0$
(iii) The collection of prime numbers between 1 and 100 .
(iv) The collection of all intelligent women in Jalandhar.
2. Find the smallest set A such that $\mathrm{A} \cup\{1$, $2\}=\{1,2,3,5,9\}$
3. In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C, 5\% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers, then find number of families which buy newspaper A only.
4. Solve the following Inequalities

$$
\frac{x^{2}+4 x+4}{2 x^{2}-x-1}>0
$$

5. Find the value of $\log _{10} 5 \cdot \log _{10} 20+\left(\log _{10} 2\right)^{2}$
6. Solve the following inequalities $\log _{\frac{5}{8}}\left(2 x^{2}-x-\frac{3}{8}\right)$
7. The set $A=\left\{x: x \in R, x^{2}=16\right.$ and $2 x=$ $6\}$ is
(A) Null set
(B) Singleton set
(C) Infinite set
(D) not a well defined collection
8. Let $A=\{x: x \in R,-1<x<1\}, B=\{x: x$ $\in R, x \leq 0$ or $x \geq 2\}$ and $A \cup B=R-D$, then the set D is
(A) $\{\mathrm{x}: 1<\mathrm{x} \leq 2\}$
(B) $\{\mathrm{x}: 1 \leq \mathrm{x}<2\}$
(C) $\{x: 1 \leq x \leq 2\}$
(D) $\{x: 1<x<2\}$
9. A class has 175 students. The following data shows the number of students obtaining one or more subjects : Mathematics 100, Physics 70, Chemistry 40, Mathematics and Physics 30, Mathematics and Chemistry 28, Physics and Chemistry 23, Mathematics \& Physics \& Chemistry 18. How many students have offered Mathematics alone?
(A) 35
(B) 48
(C) 60
(D) 22
10. The number of the integral solutions of x^{2} $+9<(x+3)^{2}<8 x+25$ is :
(A) 1
(B) 3
(C) 4
(D) 5
11. $\left(\log _{2} 10\right) \cdot\left(\log _{2} 80\right)-\left(\log _{2} 5\right) \cdot\left(\log _{2} 160\right)$ is equal to :
(A) $\log _{2} 5$
(B) $\log _{2} 20$
(C) $\log _{2} 10$
(D) $\log _{2} 16$
12. The set of all the solutions of the inequality $\log _{1-\mathrm{x}}(\mathrm{x}-2) \geq-1$ is
(A) $(-\infty, 0)$
(B) $(2, \infty)$
(C) $(-\infty, 1)$
(D) ϕ
13. Write the following expression in appropriate intervals so that they are bereft of modulus sign $\left|x^{2}-7 x+10\right|$
14. Solve the following inequalities :
(i) $|x-3| \geq 2$
(ii) $||x-2|-3| \leq 0$
15. Write the following expression in appropriate intervals so that they are bereft of modulus sign
(i) $\quad\left|\log _{10} x\right|+\left|2^{x-1}-1\right|$
(ii) $\quad\left|\left(\log _{2} x\right)^{2}-3\left(\log _{2} x\right)+2\right|$
16. Find the set of values of λ for which the equation $\left|x^{2}-4\right| \times|-12|=\lambda$ has 6 distinct real roots.
17. Product of real roots of the equation $t^{2} x^{2}+$ $|x|+9=0$
(1) is always positive
(2) is always negative
(3) does not exist
(4) none of these
18. The sum of the roots of the equation, $x^{2}+$ $|2 x-3|-4=0$, is :
(1) $-\sqrt{2}$
(2) $\sqrt{2}$
(3) -2
(4) 2
19. Let α and β be the roots of equation $\mathrm{px}^{2}+$ $\mathrm{qx}+\mathrm{r}=0, \mathrm{p} \neq 0$. If $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in the A.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=4$, then the value of $|\alpha-\beta|$ is
(1) $\frac{\sqrt{34}}{9}$
(2) $\frac{2 \sqrt{13}}{9}$
(3) $\frac{\sqrt{61}}{9}$
(4) $\frac{2 \sqrt{17}}{9}$
20. Solve the following inequalities :
(i) $\frac{\sqrt{2 x-1}}{x-2}<1$
(ii) $\mathrm{x}-\sqrt{1-|\mathrm{x}|}<0$

Sol. 1 (i) Yes (ii) Yes (iii) Yes (iv) No

Sol. $2 \quad\{3,5,9\}$

Sol. 33300

Sol. $4(-\infty,-2) \cup(-2,-1 / 2) \cup(1, \infty)$

Sol. 51

Sol. $6 \quad\left[-\frac{1}{2},-\frac{1}{4}\right) \cup\left(\frac{3}{4}, 1\right]$
Sol. 16 (i) $\quad\left[\frac{1}{2}, 2\right) \cup(5, \infty)$
(ii) $\quad[-1,(\sqrt{5}-1) / 2)$

Sol. $17 \lambda \in(12,16)$

Sol. 18 (3)

Sol. 19 (2)
Sol. 7 (A)
Sol. 20 (2)
Sol. 8 (B)

Sol. 9 (C)

Sol. 10 (D)

Sol. 11 (D)

Sol. 12 (D)

Sol. $13 x^{2}-7 x+10, x>5$ or $x \leq 2$ $-\left(x^{2}-7 x+10\right), 2<x<5$

Sol. 14 (i) $x \in(-\infty, 1] \in[5, \infty)$
(ii) $\mathrm{x}=5$ or $\mathrm{x}=-1$

Sol. 15 (i) $\quad \log _{10} x+2^{x-1}-1 \quad x \geq 1$

$$
-\left(\log _{10} x+2^{x-1}-1\right) \quad 0<x<1
$$

