

MATHEMATICS PRMO WORKSHEET (LEVEL-1)

1 – FUNDAMENTAL OF MATHEMATICS

WORKSHEET

- 1. State weather the following collections is a set or not ?
 - (i) The collection of natural numbers between 2 and 20
 - (ii) The collection of numbers which satisfy the equation $x^2 - 5x + 6 = 0$
 - (iii) The collection of prime numbers between 1 and 100.
 - (iv) The collection of all intelligent women in Jalandhar.
- 2. Find the smallest set A such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$
- 3. In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3 % buy B and C and 4% buy A and C. If 2% families buy all the three newspapers, then find number of families which buy newspaper A only.
- **4.** Solve the following Inequalities

$$\frac{x^2 + 4x + 4}{2x^2 - x - 1} > 0$$

5. Find the value of $\log_{10} 5.\log_{10} 20 + (\log_{10} 2)^2$

6. Solve the following inequalities

$$\log_{\frac{5}{8}}\left(2x^2-x-\frac{3}{8}\right)$$

- 7. The set $A = \{x : x \in R, x^2 = 16 \text{ and } 2x = 6\}$ is
 - (A) Null set
 - (B) Singleton set
 - (C) Infinite set
 - (D) not a well defined collection
- 8. Let $A = \{x : x \in R, -1 < x < 1\}$, $B = \{x : x \in R, x \le 0 \text{ or } x \ge 2\}$ and $A \cup B = R D$, then the set D is (A) $\{x : 1 < x \le 2\}$ (B) $\{x : 1 \le x < 2\}$ (C) $\{x : 1 \le x \le 2\}$ (D) $\{x : 1 < x < 2\}$
- 9. A class has 175 students. The following data shows the number of students obtaining one or more subjects : Mathematics 100, Physics 70, Chemistry 40, Mathematics and Physics 30, Mathematics and Chemistry 28, Physics and Chemistry 23, Mathematics & Physics & Chemistry 18. How many students have offered Mathematics alone ?

(A) 35	(B) 48
--------	--------

(C) 60 (D) 22

- 10. The number of the integral solutions of x^2 + 9 < $(x + 3)^2$ < 8x + 25 is : (A) 1 (B) 3
 - (C) 4 (D) 5
- 11. $(\log_2 10) \cdot (\log_2 80) (\log_2 5) \cdot (\log_2 160)$ is equal to : (A) $\log_2 5$ (B) $\log_2 20$ (C) $\log_2 10$ (D) $\log_2 16$
- 12. The set of all the solutions of the inequality $\log_{1-x} (x-2) \ge -1$ is (A) $(-\infty, 0)$ (B) $(2, \infty)$ (C) $(-\infty, 1)$ (D) ϕ
- 13. Write the following expression in appropriate intervals so that they are bereft of modulus sign $|x^2 7x + 10|$
- 14. Solve the following inequalities : (i) $|x - 3| \ge 2$ (ii) $||x - 2| - 3| \le 0$
- **15.** Write the following expression in appropriate intervals so that they are bereft of modulus sign
 - (i) $|\log_{10} x| + |2^{x-1} 1|$
 - (ii) $|(\log_2 x)^2 3(\log_2 x) + 2|$
- **16.** Solve the following inequalities :

(i)
$$\frac{\sqrt{2x-1}}{x-2} < 1$$

(ii) $x - \sqrt{1 - |x|} < 0$

- 17. Find the set of values of λ for which the equation $|x^2 4| \times |-12| = \lambda$ has 6 distinct real roots.
- 18. Product of real roots of the equation $t^2x^2 + |x| + 9 = 0$
 - (1) is always positive
 - (2) is always negative
 - (3) does not exist
 - (4) none of these
- **19.** The sum of the roots of the equation, $x^2 + |2x 3| -4 = 0$, is : (1) $-\sqrt{2}$ (2) $\sqrt{2}$ (3) -2 (4) 2
- 20. Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in the A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $|\alpha - \beta|$ is : $(1) \frac{\sqrt{34}}{9}$ $(2) \frac{2\sqrt{13}}{9}$
 - (3) $\frac{\sqrt{61}}{9}$ (4) $\frac{2\sqrt{17}}{9}$

Corporate Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota 8003899588 | Page # 2

HINTS & SOLUTION

Sol.1	(i) Yes (ii) Yes (iii) Yes (iv) No		
Sol.2	{3, 5, 9}		
Sol.3	3300		
Sol.4	$(-\infty,-2)\cup(-2,-1/2)\cup(1,\infty)$		
Sol.5	1		
Sol.6	$\left[-\frac{1}{2},-\frac{1}{4}\right)\cup\left(\frac{3}{4},1\right]$		
Sol.7	(A)		
Sol.8	(B)		
Sol.9	(C)		
Sol.10	(D)		
Sol.11	(D)		
Sol.12	(D)		
Sol.13	$x^2 - 7x + 10,$ - $(x^2 - 7x + 1)$	$x > 5 \text{ or } x \le 2$ 0), $2 < x < 5$	
Sol.14	(i) $x \in (-$ (ii) $x = 5$	$\infty, 1] \in [5, \infty)$ or $x = -1$	
Sol.15	(i) $\log_{10} x$ - (log	$x + 2^{x-1} - 1$ 10 x + 2 ^{x-1} - 1)	$x \ge 1$ $0 < x < 1$

- (ii) $(\log_2 x)^2 3(\log_2 x) + 2$ $x \in (0, 2] \cup [4, \infty)$ $-((\log_2 x)^2 - 3(\log_2 x) + 2)$ $x \in (2, 4)$
- **Sol.16** (i) $\left[\frac{1}{2}, 2\right] \cup (5, \infty)$ (ii) $\left[-1, (\sqrt{5} - 1)/2\right)$

Sol.17 $\lambda \in (12, 16)$

Sol.18 (3)

Sol.19 (2)

Sol.20 (2)