RATIO AND PROPORTION

EQUIVALENT RATIOS

Orange squash is to be mixed with water in a ratio of $1: 6$; this means that for every unit of orange squash, 6 units of water will be used. The table gives some examples:

Amount of Orange Squash $\left(\mathbf{c m}^{3}\right)$	Amount of water $\left(\mathbf{c m}^{3}\right)$
1	6
20	120
5	30

The ratios $1: 6$ and $20: 120$ and $5: 30$ are all equivalent ratios, but $1: 6$ is the simplest form.
Ratios can be simplified by dividing both sides by the same number : note the similarity to fractions. An alternative method for some purpose, is to reduce to the form $1: \mathrm{n}$ or $\mathrm{n}: 1$ by dividing both numbers by either the left-hand-side (LHS) or the right-hand-side (RHS). For example :
the ratio 4 : 10 may be simplified to

$$
\frac{4}{4}: \frac{10}{4} \Rightarrow 1: 25
$$

the ratio $8: 5$ may be simplified to

$$
\frac{8}{5}: \frac{5}{5} \Rightarrow 1.6: 1
$$

Ex. 1 Write each of these ratios in its simplest form :
(a) $7: 14$
(b) $15: 25$
(c) $10: 4$

Sol.

(a) Divide both sides by 7 , giving
$7: 14=\frac{7}{7}: \frac{14}{7}=1: 2$
(b) Divide both sides by 5 , giving
$15: 25=\frac{15}{5}: \frac{25}{5}=3: 5$
(c) Divide both sides by 2, giving
$10: 4=\frac{10}{2}: \frac{4}{2}=5: 2$
Ex. 2 Write these ratios in the fom $1: n$.
(a) $3: 12$
(b) $5: 6$
(c) $10: 42$

Sol.
(a) Divide both sides by 3 , giving $3: 12=1: 4$
(b) Divide bothe sides by 5, giving
$5: 6=1: \frac{6}{5}=1: 1.2$
(c) Divide both sides by 10 , giving
$10: 42=1: \frac{42}{10}=1: 4.2$

Ex. 3 The scale on a map is $1: 20000$. What actual distance does a length of 8 cm on the map represent ?
Sol. Actual distance $=8 \times 20000$
$=160000 \mathrm{~cm}=1600 \mathrm{~m}=1.6 \mathrm{~km}$

DIRECT PROPORTION

Direct proportion can be used to carry out calculations like the one below:

If 10 calculators cost $£ 120$,
then 1 calculator costs $£ 12$,
And 8 calculators cost $£ 96$.

Ex. 4 If 6 copies of a book cost $£ 9$, calculate the cost of 8 books.

Sol. If 6 copies cost $£ 9$,
then 1 copy costs $£ \frac{9}{6}=£ 1.50$
and 8 copies cost $£ 1.50 \times 8=£ 12$

Ex. 5 If 25 floppy discs cost $£ 5.50$, calculate the cost of 11 floppy discs.
Sol. If 25 discs cost $£ 5.50=550$ p then 1 disc costs $=\frac{550}{25}=22 \mathrm{p}$ so 11 discs cost $11 \times 22 \mathrm{p}=242 \mathrm{p}=£ 2.42$

PROPORTIONAL DIVISION

Sometimes we need to divide something in a given ratio. Malcolm and Alison share the profits from their business in the ratio $2: 3$. This means that, out of every $£ 5$ profit. Malcolm gets $£ 2$ and Alison gets $£ 3$.

Ex. 6 Julie and Jack run a stall at a car boot sale and take a total of $£ 90$. They share the money in the ratio $4: 5$. How much money does each receive.

Sol. As the ratio is 4 : 5, first add these numbers together to see by how many parts the $£ 90$ is to be divided.
$4+5=9$, so 9 parts are needed.
Now divide the total by 9 .
$\frac{90}{9}=10$, so each part is $£ 10$.
Julie gets 4 parts at $£ 10$, giving $4 \times £ 10$
$=£ 40$.
Jack gets 5 parts at $£ 10$, giving $5 \times £ 10$
$=£ 50$.

Ex. 7 Rachel, Ben and Emma are given $£ 52$. They decide to divide the money in the ratio of their ages, $10: 9: 7$. How much does each receive?

Sol. $10+9+7=$ so 26 parts are needed.
Now divide the total by 26 .
$\frac{52}{26}=2$, so each part is $£ 2$.
Rachel gets 10 parts at $£ 2$, giving
$10 \times £ 2=£ 20$
Ben gets 9 parts at $£ 2$, giving
$9 \times £ 2=£ 18$
Emma gets 7 parts at $£ 2$, giving
$7 \times £ 2=£ 14$

LINEAR CONVERSION

The ideas used in this unit can be used for converting masses, lengths and currencies.

Ex. 8 If $£ 1$ is worth 9 French francs, convert :
(a) $£ 22$ to Ff,
(b) 45 Ff to $£$
(c) 100 Ff to $£$.

Sol.
(a) $£ 22=22 \times 9=198 \mathrm{Ff}$
(b) $\quad 1 \mathrm{Ff}=£ \frac{1}{9}$ so $45 \mathrm{Ff}=45 \times \frac{1}{9}=\frac{45}{9}=£ 5$
(c) $100 \mathrm{Ff}=100 \times \frac{1}{9}=\frac{100}{9}=£ 11 \frac{1}{9}$
$=£ 11.11$ to the nearest pence.

Ex. 9 Use the fact that 1 foot is approximately 30 cm to convert :
(a) 8 feet to cm
(b) 50 cm to feet
(c) 195 cm to feet

Sol.
(a) 8 feet $=8 \times 30=240 \mathrm{~cm}$
(b) $1 \mathrm{~cm}=\frac{1}{30}$ feet, so $50 \mathrm{~cm}=50 \times \frac{1}{30}$ $=\frac{5}{3}=1 \frac{2}{3}$ feet
(c) $195 \mathrm{~cm}=195 \times \frac{1}{30}=\frac{195}{30}=\frac{13}{2}=6 \frac{1}{2}$ feet

Ex. 10 If $£ 1$ is worth \$ 1.60, convert :
(a) $£ 15$ to dollars
(b) $\$ 8$ to pounds

Sol.
(a) $£ 15=15 \times 1.60=\$ 24$.
(b) $\quad \$ 1=£ \frac{1}{1.60}=£ \frac{10}{16}$
$\$ 8=8 \times \frac{10}{16}=\frac{80}{16}=£ 5$

INVERSE PROPORTION

Inverse proportion is when an increase in one quantity causes a decrease in another:

The relationship between speed and time is an example of inverse proportionality : as the speed increases, the journey time decreases, so the time for a journey can be found dividing the distance by the speed.

Ex. 11

(a) Ben rides his bike at a speed of 10 mph . How long does it takes him to cycle 40 miles?
(b) On another day he cycles the same route at a speed of 16 mph . How much time does this journey take?

Sol.

(a) Time $=\frac{40}{10}=4$ hours

Note : Faster speed \Rightarrow shorter time.
(b) Time $=\frac{40}{16}=2 \frac{1}{2}=2 \frac{1}{2}$ hours.

Ex. 11 Jai has to travel 280 miles. How long does it take if he travels at :
(a) 50 mph
(b) 60 mph
(c) How much time does he save when he travels at the faster speed?

Sol.

(a) Time $=\frac{280}{50}=5.6$ hours $=5$ hours 36 minutes.
(b) Time $=\frac{280}{60}=4 \frac{2}{3}$ hours $=4$ hours 40 minutes
(c) Time saved $=5$ hours 36 mins -4 hours 40 mins $=56$ minutes

Ex. 12 In a factory, each employee make 40 chicken pies in one hour. How long will it take :
(a) 6 people to make 40 pies,
(b) 3 people to make 240 pies,
(c) 10 people to make 600 pies?

Sol.

(a) 1 person makes 40 pies in 1 hour. 6 people make 40 pies in $\frac{1}{6}$ hour (or 10 minutes).
(b) 1 person makes 40 pies in 1 hour

1 person makes 240 pies in $\frac{240}{40}=6$ hours.

3 people make 240 pies in $\frac{6}{3}=2$ hours.
(c) 1 person makes 40 pies in 1 hour.

1 person makes 600 pies in $\frac{600}{40}=15$ hours.

10 people make 600 pies in $\frac{15}{10}=1 \frac{1}{2}$ hours.

IMPORTANT FACTS \& FORMULAE

1. Ratio : The ratio of two quantities $\mathrm{a} \& \mathrm{~b}$ in the same units, is the fraction $\frac{\mathrm{a}}{\mathrm{b}}$ and we write it as a:b.

In the ratio $a: b$, we call a as the first term or antecedent and b, the second term or consequent.

Ex.The ratio $5: 9$ represents $\frac{5}{9}$ with antecedent $=5$, consequent $=9$.

Rule : The multiplication or division of each term of a ratio by the same nor-zero number does not affect the ratio.
Ex. $4: 5=8: 10=12: 15$ etc. Also, $4: 6$ $=2: 3$.
2. Proportion : The equality of two ratios is called proportion.
If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$, we write, $\mathrm{a}: \mathrm{b}:: \mathrm{c}: \mathrm{d}$ and we say that a, b, c, d are in proportion. Here a and d are called extremes, while b and c are called mean terms.

Product of means : Product of extremes.
Thus, $\mathrm{a}: \mathrm{b}: \mathrm{c}: \mathrm{d} \Leftrightarrow(\mathrm{b} \times \mathrm{c})=(\mathrm{a} \times \mathrm{d})$.
Ex. $4: 5=8: 10=12: 15$ etc. Also, $4: 6$ $=2: 3$.
(ii) Third Proportional : If $\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{c}$, then c is called the third proportional to a and b .
(iii) Mean Proportional : Mean proportional between a and b is $\sqrt{\mathrm{ab}}$.
4. (i) Comparison of Ratios :

We say that $(\mathrm{a}: \mathrm{b})>(\mathrm{c}: \mathrm{d}) \Leftrightarrow \frac{\mathrm{a}}{\mathrm{b}}>\frac{\mathrm{c}}{\mathrm{d}}$
(ii) Compounded Ratio : The compounded ratio of the ratios (a $: b),(c: d),(e: f)$ is (ace : bdf).
5. (i) Duplicate ratio of $(a: b)$ is $\left(a^{2}: b^{2}\right)$
(ii) Sub-duplicate ratio:
$(a: b)$ is $(\sqrt{a}: \sqrt{b})$.
(iii) Triplicate ratio: of $(a: b)$ is $\left(a^{3}: b^{3}\right)$.
(iv) Sub-Triplicate ratio: of (a: b) is $\left(a^{1 / 3}: b^{1 / 3}\right)$.
(v) If $\frac{a}{b}=\frac{c}{d}$, then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
(Componendo and Dividendo)

6. Variation

(i) We say that x is directly proportion to y , if $\mathrm{x}=\mathrm{ky}$ for some constant k and we write, $x \propto y$.
(ii) We say that x is inversely proportional to y , if $\mathrm{xy}=\mathrm{k}$ for some. constant k and we write, $\mathrm{x} \propto \frac{1}{\mathrm{y}}$.
3. (i) Fourth Proportional : If $\mathrm{a}: \mathrm{b}=\mathrm{c}$: d , then d is called the fourth proportional to $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

WORKSHEET

1. If $\mathrm{A}: \mathrm{B}=5: 7$ and $\mathrm{B}: \mathrm{C}=6: 11$, then A : $\mathrm{B}: \mathrm{C}$ is :
(a) $55: 77: 66$
(b) $30: 42: 77$
(c) $35: 49: 42$
(d) None of these
2. If A: B $=3: 4$ and $\mathrm{B}: \mathrm{C}=8: 9$, then $\mathrm{A}: \mathrm{C}$ is :
(a) $1: 3$
(b) $3: 2$
(c) $2: 3$
(d) $1: 2$
3. If $\mathrm{A}: \mathrm{B}=8: 15, \mathrm{~B}: \mathrm{C}=5: 8$ and $\mathrm{C}: \mathrm{D}=$ $4: 5$, then $\mathrm{A}: \mathrm{D}$ is equal to :
(a) $2: 7$
(b) $4: 15$
(c) $8: 15$
(d) $15: 4$
4. If $A: B: C=2: 3: 4$, then $\frac{A}{B}: \frac{B}{C}: \frac{C}{A}$ is equal to :
(a) $4: 9: 16$
(b) $8: 9: 12$
(c) $8: 9: 16$
(d) $8: 9: 24$
5. If $\mathrm{A}: \mathrm{B}=\frac{1}{2}: \frac{3}{8}$, $\mathrm{B}: \mathrm{C} \frac{1}{3}: \frac{5}{9}=$ and $\mathrm{C}: \mathrm{D}=$ $\frac{5}{6}: \frac{3}{4}$, the the ratio $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}$ is :
(a) $4: 6: 8: 10$
(b) $6: 4: 8: 10$
(c) $6: 8: 9: 10$
(d) $8: 6: 10: 9$
6. If $\mathrm{A}: \mathrm{B}=2: 3, \mathrm{~B}: \mathrm{C}=4: 5$ and $\mathrm{C}: \mathrm{D}=6$ $: 7$, then $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}$ is :
(a) $16: 22: 30: 35$
(b) $16: 24: 15: 35$
(c) $16: 24: 30: 35$
(d) $18: 24: 30: 35$
7. If $2 \mathrm{~A}=3 \mathrm{~B}=4 \mathrm{C}$, then $\mathrm{A}: \mathrm{B}: \mathrm{C}$ is :
(a) $2: 3: 4$
(b) $4: 3: 2$
(c) $6: 4: 3$
(d) $20: 15: 2$
8. If $\frac{\mathrm{A}}{3}: \frac{\mathrm{B}}{4}: \frac{\mathrm{C}}{5}$, then $\mathrm{A}: \mathrm{B}: \mathrm{C}$ is :
(a) $4: 3: 5$
(b) $5: 4: 3$
(c) $3: 4: 5$
(d) $20: 15: 2$
9. If $2 A=3 B$ and $4 B=5 C$, then $A: C$ is
(a) $4: 3$
(b) $8: 15$
(c) $15: 8$
(d) $3: 4$
10. The ratio of $4^{3.5}: 2^{5}$ is same as :
(a) $2: 1$
(b) $4: 1$
(c) $7: 5$
(d) $7: 10$
11. If $\frac{1}{5}: \frac{1}{x}=\frac{1}{x}: \frac{1}{125}$, then the value of x is :
(a) 1.5
(b) 2
(c) 2.5
(d) 3.5
12. If $0.75: x:: 5: 8$, then x is equal to
(a) 1.12
(b) 1.20
(c) 1.25
(d) 1.30
13. If $\mathrm{x}: y=5: 2$, then $(8 \mathrm{x}+9 \mathrm{y}):(8 \mathrm{x}+2 \mathrm{y})$ is :
(a) $22: 29$
(b) $26: 61$
(c) $29: 22$
(d) $61: 26$
14. If 15% of $x=20 \%$ of y, then $x: y$ is
(a) $3: 4$
(b) $4: 3$
(c) $17: 16$
(d) $16: 17$
15. If $(x: y)=2: 1$, then $\left(x^{2}-y^{2}\right):\left(x^{2}+y^{2}\right)$ is :
(a) $3: 5$
(b) $5: 3$
(c) $1: 3$
(d) $3: 1$
16. If $\left(4 x^{2}-3 y^{2}\right):\left(2 x^{2}+5 y^{2}\right)=12: 19$, then $(x: y)$ is :
(a) $2: 3$
(b) $1: 2$
(c) $3: 2$
(d) $2: 1$
17. If $x^{2}+4 y^{2}=4 x y$, then $x: y$ is
(a) $2: 1$
(b) $1: 2$
(c) $1: 1$
(d) $1: 4$
18. If $5 x^{2}-13 x y+6 y^{2}=0$, then $x: y$ is
(a) $(2: 1)$ only
(b) $(3: 5)$ only
(c) $(5: 3)$ or $(1: 2)$
(d) $(3: 5)$ or $(2: 1)$
$\Rightarrow \mathrm{A}: \mathrm{B}=4: 3, \mathrm{~B}: \mathrm{C}=3: 5$ and $\mathrm{C}: \mathrm{D}=$
$5: \frac{9}{2}$
$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}=4: 3: 5: \frac{9}{2}$
$=8: 6: 10: 9$
19. If $\frac{x}{5}=\frac{y}{8}$, then $(x+5):(y+8)$ is equal to :
(a) $3: 5$
(b) $13: 8$
(c) $8: 5$
(d) $5: 8$
20. If $\frac{a}{3}=\frac{b}{4}=\frac{c}{7}$, then $\frac{a+b+c}{c}$ is equal to :
(a) 7
(b) 2
(c) $\frac{1}{2}$
(d) $\frac{1}{7}$

HINT'S \& SOLUTION

Sol. 1 A : B $=5: 7, \mathrm{~B}: \mathrm{C}=6: 11=\left(6 \times \frac{7}{6}\right)$:
$\left(11 \times \frac{7}{6}\right)=7: \frac{77}{6}$.
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}=5: 7: \frac{77}{6}=30: 42: 77$.
Sol. $2\left(\frac{\mathrm{~A}}{\mathrm{~B}}=\frac{3}{4}, \frac{\mathrm{~B}}{\mathrm{C}}=\frac{8}{9}\right) \Rightarrow \frac{\mathrm{A}}{\mathrm{C}}=\left(\frac{\mathrm{A}}{\mathrm{B}} \times \frac{\mathrm{B}}{\mathrm{C}}\right)$
$=\left(\frac{3}{4} \times \frac{8}{9}\right)=\frac{2}{3} \Rightarrow \mathrm{~A}: \mathrm{C}=2: 3$.

Sol. $3 \frac{\mathrm{~A}}{\mathrm{~B}}=\frac{8}{15}, \frac{\mathrm{~B}}{\mathrm{C}}=\frac{5}{8}$ and $\frac{\mathrm{C}}{\mathrm{D}}=\frac{4}{5}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{D}}=\left(\frac{\mathrm{A}}{\mathrm{B}} \times \frac{\mathrm{B}}{\mathrm{C}} \times \frac{\mathrm{C}}{\mathrm{D}}\right)=\left(\frac{8}{15} \times \frac{5}{8} \times \frac{4}{5}\right)=\frac{4}{15}$
$\Rightarrow \mathrm{A}: \mathrm{D}=4: 15$.
Sol. 4 Let $\mathrm{A}=2 \mathrm{x}, \mathrm{B}=3 \mathrm{x}$ and $\mathrm{C}=4 \mathrm{x}$. Then, $\frac{\mathrm{A}}{\mathrm{B}}=$ $\frac{2 \mathrm{x}}{3 \mathrm{x}}=\frac{2}{3}, \frac{\mathrm{~B}}{\mathrm{C}}=\frac{3 \mathrm{x}}{4 \mathrm{x}}=\frac{3}{4}$ and $\frac{\mathrm{C}}{\mathrm{A}}=\frac{4 \mathrm{x}}{2 \mathrm{x}}=\frac{2}{1}$. $\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}: \frac{\mathrm{B}}{\mathrm{C}}: \frac{\mathrm{C}}{\mathrm{A}}=\frac{2}{3}: \frac{3}{4}: \frac{2}{1}=8: 9: 24$.

Sol. $5 \mathrm{~A}: \mathrm{B}=\frac{1}{2}: \frac{3}{8}=4: 3, \mathrm{~B}: \mathrm{C}=\frac{1}{3}: \frac{5}{9}=3: 5$, $\mathrm{C}: \mathrm{D}=\frac{5}{6}: \frac{3}{4}=10: 9$.

Sol. 6 A : B $=2: 3, \mathrm{~B}: \mathrm{C}=4: 5=\left(4 \times \frac{3}{4}\right)$: $\left(5 \times \frac{3}{4}\right)=3: \frac{15}{4}$ and $\mathrm{C}: \mathrm{D}=6: 7$
$=\left(6 \times \frac{15}{24}\right):\left(7 \times \frac{15}{24}\right)=\frac{15}{4}: \frac{35}{8}$
$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}=2: 3: \frac{15}{4}: \frac{35}{8}$
$=16: 24: 30: 35$.

Sol. 7 Let $2 \mathrm{~A}=3 \mathrm{~B}=4 \mathrm{C}=\mathrm{k}$. Then, $\mathrm{A}=\frac{\mathrm{k}}{2}, \mathrm{~b}=$ $\frac{\mathrm{k}}{3}, \mathrm{c}=\frac{\mathrm{k}}{4}$.
$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}=\frac{\mathrm{k}}{2}: \frac{\mathrm{k}}{3}: \frac{\mathrm{k}}{4}=6: 4: 3$.
Sol. 8 Let $\frac{\mathrm{A}}{3}=\frac{\mathrm{B}}{4}=\frac{\mathrm{C}}{5}=\mathrm{k}$. Then, $\mathrm{A}=3 k, \mathrm{~B}=4 k$ and $\mathrm{C}=5 \mathrm{k}$.
$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}=3 k: 4 k: 5 k=3: 4: 5$.
Sol.9 $2 \mathrm{~A}=3 \mathrm{~B}$ and $4 \mathrm{~B}=5 \mathrm{C} \Rightarrow$ and $\frac{\mathrm{A}}{\mathrm{B}}=\frac{3}{2}$ and $\frac{\mathrm{B}}{\mathrm{C}}=\frac{5}{4}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{C}}=\left(\frac{\mathrm{A}}{\mathrm{B}} \times \frac{\mathrm{B}}{\mathrm{C}}\right)=\left(\frac{3}{2} \times \frac{5}{4}\right)=\frac{15}{8}$
$=\mathrm{A}: \mathrm{C}=15: 8$.
Sol. $10 \frac{4^{3.5}}{2^{5}}=\frac{\left(2^{2}\right)^{3.5}}{2^{5}}=\frac{2^{(2 \times 3.5)}}{2^{5}}=\frac{2^{7}}{2^{5}}=2^{2}=4$.
\therefore Required ratio is $4: 1$.

Sol. $11 \frac{1}{5}: \frac{1}{x}=\frac{1}{x}: \frac{100}{125} \Rightarrow \frac{1}{x} \times \frac{1}{x}=\left(\frac{1}{5} \times \frac{100}{125}\right)=\frac{4}{25}$
$\Rightarrow \frac{1}{\mathrm{x}^{2}}=\frac{4}{25} \Rightarrow \mathrm{x}^{2}=\frac{25}{4} \Rightarrow \mathrm{x}=\frac{5}{2}=2.5$.

Sol. $12(\mathrm{x} \times 5)=(0.75 \times 8) \Rightarrow \mathrm{x}=\frac{6}{5}=1.20$.
Sol. 13 Let $\mathrm{x}=5 k$ and $y=2 k$. Then, $\frac{8 \mathrm{x}+9 \mathrm{y}}{8 \mathrm{x}+2 \mathrm{y}}$
$=\frac{(8 \times 5 \mathrm{k})+(9 \times 2 \mathrm{k})}{(8 \times 5 \mathrm{k})+(2 \times 2 \mathrm{k})}=\frac{58 \mathrm{k}}{44 \mathrm{k}}=\frac{29}{22}$.
$\Rightarrow(8 \mathrm{x}+9 \mathrm{y}):(8 \mathrm{x}+2 \mathrm{y})=29: 22$.
Sol. 1415% of $x=20 \%$ of $y \Rightarrow \frac{15 x}{100} \Rightarrow \frac{20 y}{100}$
$=\frac{\mathrm{x}}{\mathrm{y}}=\left(\frac{20}{100} \times \frac{100}{15}\right)=\frac{4}{3}$
$\Rightarrow \mathrm{x}: y=4: 3$.
Sol. $15 \frac{x}{y}=\frac{2}{1} \Leftrightarrow \frac{x^{2}}{y^{2}}=\frac{4}{1}$
$\Leftrightarrow \frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{4+1}{4-1}$.
[By componendo and dividendo]
$\Leftrightarrow \frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{x}^{2}+\mathrm{y}^{2}}=\frac{3}{5} \Leftrightarrow\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right):\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$
$=3: 5$.
Sol. $16 \frac{4 x^{2}-3 y^{2}}{2 x^{2}+5 y^{2}}=\frac{12}{19} \Leftrightarrow 19\left(4 x^{2}-3 y^{2}\right)$
$=12\left(2 \mathrm{x}^{2}+5 \mathrm{y}^{2}\right)$
$\Leftrightarrow 52 \mathrm{x}^{2}=117 \mathrm{y}^{2} \Leftrightarrow 4 \mathrm{x}^{2}=9 \mathrm{y}^{2} \Leftrightarrow \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}=\frac{9}{4}$
$\Leftrightarrow \frac{\mathrm{x}}{\mathrm{y}}=\frac{3}{2}$.
\therefore Required ratio is $3: 2$.
Sol. $17 x^{2}+4 y^{2}=4 x y \Leftrightarrow x^{2}-4 x y+4 y^{2}=0$
$\Leftrightarrow(x-2 y)^{2}=0$
$\Leftrightarrow(x-2 y)=0 \Leftrightarrow x=2 y \Leftrightarrow \frac{x}{y}=\frac{2}{1}$.
Sol. $185 x^{2}-13 x y+6 y^{2}=0$
$\Leftrightarrow 5 \mathrm{x}^{2}-10 \mathrm{xy}-3 \mathrm{xy}+6 \mathrm{y}^{2}=0$
$\Leftrightarrow 5 \mathrm{x}(\mathrm{x}-2 \mathrm{y})=3 \mathrm{y}(\mathrm{x}-2 \mathrm{y})=0$
$\Leftrightarrow(\mathrm{x}-2 \mathrm{y})(5 \mathrm{x}=3 \mathrm{y})=0$
$\Leftrightarrow \mathrm{x}=2 \mathrm{y}$ or $5 \mathrm{x}=3 \mathrm{y}$
$\Leftrightarrow \frac{\mathrm{x}}{\mathrm{y}}=\frac{2}{1}$ or $\frac{\mathrm{x}}{\mathrm{y}}=\frac{3}{5}$.
$\therefore(\mathrm{x}: y)=(2: 1)$ or $(3: 5)$.

Sol. 19 Let $\frac{x}{5}=\frac{y}{8}=k$. Then, $x=5 k$ and $y=8 k$.
$\therefore \frac{\mathrm{x}+5}{\mathrm{y}+8}=\frac{5 \mathrm{k}+5}{8 \mathrm{k}+8}=\frac{5(\mathrm{k}+1)}{8(\mathrm{k}+1)}=\frac{5}{8}$
$\Rightarrow(\mathrm{x}+5):(\mathrm{y}+8)=5: 8$.
Sol. 20 Let $\frac{\mathrm{a}}{3}=\frac{\mathrm{b}}{4}=\frac{\mathrm{c}}{7}=\mathrm{k}$. Then, $\mathrm{x}=5 k$ and $y=$ 8 k .
$\therefore \frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{c}}=\frac{3 \mathrm{k}+4 \mathrm{k}+7 \mathrm{k}}{7 \mathrm{k}}=\frac{14 \mathrm{k}}{7 \mathrm{k}}=2$.

